phenomenology of light sterile neutrinos carlo giunti
play

Phenomenology of Light Sterile Neutrinos Carlo Giunti INFN, Sezione - PowerPoint PPT Presentation

Phenomenology of Light Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica, Universit` a di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it Technische Universit at M unchen


  1. Phenomenology of Light Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica, Universit` a di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it Technische Universit¨ at M¨ unchen Garching, M¨ unchen, Germany 11 December 2013 C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 1/38

  2. Fermion Mass Spectrum 10 12 t 10 11 10 10 b c τ 10 9 s 10 8 µ ν τ d 10 7 u m [eV] 10 6 ν µ e 10 5 10 4 10 3 10 2 10 ν e ν 1 , ν 2 , ν 3 1 10 − 1 C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 2/38

  3. Neutrino Oscillations ◮ 1957: Bruno Pontecorvo proposed Neutrino Oscillations in analogy with K 0 ⇆ ¯ K 0 oscillations (Gell-Mann and Pais, 1955) ◮ Flavor Neutrinos: ν e , ν µ , ν τ produced in Weak Interactions ◮ Massive Neutrinos: ν 1 , ν 2 , ν 3 propagate from Source to Detector ◮ A Flavor Neutrino is a superposition of Massive Neutrinos | ν e � = U e 1 | ν 1 � + U e 2 | ν 2 � + U e 3 | ν 3 � | ν µ � = U µ 1 | ν 1 � + U µ 2 | ν 2 � + U µ 3 | ν 3 � | ν τ � = U τ 1 | ν 1 � + U τ 2 | ν 2 � + U τ 3 | ν 3 � ◮ U is the 3 × 3 Neutrino Mixing Matrix C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 3/38

  4. | ν ( t = 0) � = | ν e � = U e 1 | ν 1 � + U e 2 | ν 2 � + U e 3 | ν 3 � ν 1 ν e ν µ ν 2 ν 3 propagation source detector | ν ( t > 0) � = U e 1 e − iE 1 t | ν 1 � + U e 2 e − iE 2 t | ν 2 � + U e 3 e − iE 3 t | ν 3 �� = | ν e � k = p 2 + m 2 E 2 k at the detector there is a probability > 0 to see the neutrino as a ν µ Neutrino Oscillations are Flavor Transitions ν e → ν µ ν e → ν τ ν µ → ν e ν µ → ν τ ¯ ν e → ¯ ν µ ¯ ν e → ¯ ν τ ν µ → ¯ ¯ ν e ν µ → ¯ ¯ ν τ transition probabilities depend on U and ∆ m 2 kj ≡ m 2 k − m 2 j C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 4/38

  5. Two-Neutrino Mixing and Oscillations ν 2 ν µ 2 � | ν α � = U α k | ν k � ( α = e , µ ) ν e k =1 ϑ ν 1 � cos ϑ � sin ϑ | ν e � = cos ϑ | ν 1 � + sin ϑ | ν 2 � U = − sin ϑ cos ϑ | ν µ � = − sin ϑ | ν 1 � + cos ϑ | ν 2 � ∆ m 2 ≡ ∆ m 2 21 ≡ m 2 2 − m 2 1 � ∆ m 2 L � P ν e → ν µ = P ν µ → ν e = sin 2 2 ϑ sin 2 Transition Probability: 4 E Survival Probabilities: P ν e → ν e = P ν µ → ν µ = 1 − P ν e → ν µ C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 5/38

  6. Experimental Evidences of Neutrino Oscillations    SNO, BOREXino   Solar Super-Kamiokande  S ≃ 7 . 6 × 10 − 5 eV 2     ∆ m 2     ν e → ν µ , ν τ GALLEX/GNO, SAGE     → sin 2 ϑ S ≃ 0 . 30 Homestake, Kamiokande    VLBL Reactor    (KamLAND)  ν e disappearance ¯     Super-Kamiokande Atmospheric   Kamiokande, IMB    ν µ → ν τ   A ≃ 2 . 4 × 10 − 3 eV 2   ∆ m 2 MACRO, Soudan-2     LBL Accelerator → (K2K, MINOS, T2K) sin 2 ϑ A ≃ 0 . 50 ν µ disappearance       LBL Accelerator   (Opera)   ν µ → ν τ LBL Accelerator   ∆ m 2 (T2K, MINOS)  ν µ → ν e  A   → � � sin 2 ϑ 13 ≃ 0 . 023 LBL Reactor Daya Bay, RENO    ν e disappearance ¯  Double Chooz C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 6/38

  7. Three-Neutrino Mixing Paradigm ν e ν µ ν τ m 2 m 2 ν 3 ν 2 ∆ m 2 S ν 1 ∆ m 2 ∆ m 2 A A ν 2 ∆ m 2 S ν 1 ν 3 Normal Spectrum Inverted Spectrum 21 = 7 . 50 ± 0 . 20 × 10 − 5 eV 2 ∆ m 2 S = ∆ m 2 uncertainty ≃ 2 . 6% − 0 . 08 × 10 − 3 eV 2 ∆ m 2 A = | ∆ m 2 31 | ≃ | ∆ m 2 32 | = 2 . 32 +0 . 12 uncertainty ≃ 5% C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 7/38

  8.     s 13 e − i δ 13 1 0 0 c 12 c 13 s 12 c 13 U =     − s 12 c 23 − c 12 s 23 s 13 e i δ 13 c 12 c 23 − s 12 s 23 s 13 e i δ 13 0 e i λ 2 s 23 c 13 0         s 12 s 23 − c 12 c 23 s 13 e i δ 13 − c 12 s 23 − s 12 c 23 s 13 e i δ 13 e i λ 3 0 0 c 23 c 13         1 0 0 0 s 13 e − i δ 13 c 13 c 12 s 12 0 1 0 0   =       0 e i λ 2 0 c 23 s 23 0 1 0 − s 12 c 12 0 0             0 − s 23 c 23 − s 13 e i δ 13 0 e i λ 3 c 13 0 0 1 0 0 ββ 0 ν ϑ 23 = ϑ A Chooz, Palo Verde ϑ 12 = ϑ S sin 2 ϑ 23 ≃ 0 . 4 − 0 . 6 sin 2 ϑ 12 = 0 . 30 ± 0 . 01 T2K, MINOS Daya Bay, RENO sin 2 ϑ 13 = 0 . 023 ± 0 . 002 δ sin 2 ϑ 23 δ sin 2 ϑ 13 δ sin 2 ϑ 12 ≃ 40% ≃ 10% ≃ 5% sin 2 ϑ 23 sin 2 ϑ 13 sin 2 ϑ 12 C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 8/38

  9. Open Problems ◮ ϑ 23 ⋚ 45 ◦ ? ◮ Atmospheric ν , T2K, NO ν A, . . . . . . ◮ Mass Hierarchy ? ◮ NO ν A, Atmospheric ν , Day Bay II, RENO-50, Supernova ν , . . . ◮ CP violation ? ◮ NO ν A, LAGUNA-LBNO, LBNE (USA), HyperK, . . . ◮ Absolute Mass Scale ? ◮ β Decay, Neutrinoless Double- β Decay, Cosmology, . . . ◮ Dirac or Majorana ? ◮ Neutrinoless Double- β Decay, . . . ◮ Beyond Three-Neutrino Mixing ? Sterile Neutrinos ? C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 9/38

  10. Absolute Scale of Neutrino Masses Normal Spectrum Inverted Spectrum Quasi−Degenerate Quasi−Degenerate m 3 m 2 1 1 m 1 m 2 m 1 m 3 m 1 , m 2 , m 3 [eV] m 3 , m 1 , m 2 [eV] 10 − 1 10 − 1 m 2 ∆ m A 2 ∆ m A 2 95% Cosmological Limit 95% KATRIN Sensitivity 95% Cosmological Limit 95% KATRIN Sensitivity m 3 m 1 95% Kinematical Limit 95% Kinematical Limit 10 − 2 10 − 2 ∆ m S 2 m 2 m 1 m 3 Normal Hierarchy Inverted Hierarchy 10 − 3 10 − 3 10 − 3 10 − 2 10 − 1 10 − 3 10 − 2 10 − 1 1 1 Lightest mass: m 1 [eV] Lightest mass: m 3 [eV] m 2 2 = m 2 1 + ∆ m 2 21 = m 2 1 + ∆ m 2 m 2 1 = m 2 3 − ∆ m 2 31 = m 2 3 + ∆ m 2 S A m 2 3 = m 2 1 + ∆ m 2 31 = m 2 1 + ∆ m 2 m 2 2 = m 2 1 + ∆ m 2 21 ≃ m 2 3 + ∆ m 2 A A � A ≃ 5 × 10 − 2 eV Quasi-Degenerate for m 1 ≃ m 2 ≃ m 3 ≃ m ν � ∆ m 2 95% Cosmological Limit: Planck + WMAP9 + highL + BAO [arXiv:1303.5076] C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 10/38

  11. Effective Neutrino Mass in Beta-Decay β = | U e 1 | 2 m 2 1 + | U e 2 | 2 m 2 2 + | U e 3 | 2 m 2 m 2 3 10 ◮ Quasi-Degenerate: � k | U ek | 2 = m 2 Current 95% Bound m 2 β ≃ m 2 ν ν 1 ◮ Inverted Hierarchy: m 2 β ≃ (1 − s 2 13 )∆ m 2 A ≃ ∆ m 2 KATRIN 95% Sensitivity A m β [eV] 10 − 1 IS 95% Cosmological Limit ◮ Normal Hierarchy: ∆ m A 2 m 2 β ≃ s 2 12 c 2 13 ∆ m 2 S + s 2 13 ∆ m 2 A ≃ 2 × 10 − 5 + 6 × 10 − 5 eV 2 10 − 2 NS 1 σ ◮ m β � 4 × 10 − 2 eV 2 σ 3 σ ⇓ 10 − 3 10 − 3 10 − 2 10 − 1 1 10 Normal Spectrum m min [eV] C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 11/38

  12. Majorana ν : Neutrinoless Double-Beta Decay Arsenic 1 / 2 ) − 1 = G 0 ν |M 0 ν | 2 m 2 ( T 0 ν ββ 76 β + 33 As Germanium β − Effective Majorana Mass 76 32 Ge � � � � 3 � � � β − β − U 2 m ββ = � ek m k � Selenium � � k =1 76 34 Se EXO + KamLAND-Zen 56 Ba + e − + e − 136 54 Xe → 136 d u W � [PRL 109 (2012) 032505; PRL 110 (2013) 062502] e U ek | m ββ | � 0 . 12 − 0 . 25 eV (90%C.L.) m � k k GERDA 34 Se + e − + e − 76 32 Ge → 76 U ek � e [arXiv:1307.4720] W | m ββ | � 0 . 2 − 0 . 6 eV (90%C.L.) d u C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 12/38

  13. Effective Majorana Neutrino Mass m ββ = | U e 1 | 2 m 1 + | U e 2 | 2 e i α 2 m 2 + | U e 3 | 2 e i α 3 m 3 1 90% GERDA ◮ Quasi-Degenerate: � 90% EXO+KLZ 10 − 1 1 − s 2 2 ϑ 12 s 2 | m ββ | ≃ m ν α 2 IS ◮ Inverted Hierarchy: |m ββ | [eV] 95% Cosmological Limit � 10 − 2 ∆ m 2 A (1 − s 2 2 ϑ 12 s 2 | m ββ | ≃ α 2 ) ◮ Normal Hierarchy: NS 10 − 3 | m ββ | ≃ | s 2 S + e i α s 2 � ∆ m 2 � ∆ m 2 A | 12 13 ≃ | 2 . 7 + 1 . 2 e i α | × 10 − 3 eV 1 σ 2 σ m 1 � 10 − 3 eV ⇒ cancellation? 3 σ 10 − 4 10 − 4 10 − 3 10 − 2 10 − 1 1 m min [eV] | m ββ | � 10 − 2 eV = ⇒ Normal Spectrum C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 13/38

  14. Beyond Three-Neutrino Mixing: Sterile Neutrinos · · · ν s 1 ν s 2 ν τ ν µ ν e · · · ν 1 ν 2 ν 3 ν 4 ν 5 m 2 m 2 m 2 m 2 m 2 log m 2 1 2 3 4 5 ∆ m 2 ∆ m 2 ∆ m 2 SOL ATM SBL 3 ν -mixing C. Giunti − Phenomenology of Light Sterile Neutrinos − TUM − 11 Dec 2013 − 14/38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend