imaging and controlling emergent states
play

Imaging and Controlling Emergent States in Quantum Materials Peter - PowerPoint PPT Presentation

Imaging and Controlling Emergent States in Quantum Materials Peter Wahl University of St Andrews Acknowledgements Experiments: Christopher Trainer, Chi Ming Yim, Ram Aluru, Haibiao Zhou, Antoine Essig, Jean-Philippe Reid (St Andrews) Mostafa


  1. Imaging and Controlling Emergent States in Quantum Materials Peter Wahl University of St Andrews

  2. Acknowledgements Experiments: Christopher Trainer, Chi Ming Yim, Ram Aluru, Haibiao Zhou, Antoine Essig, Jean-Philippe Reid (St Andrews) Mostafa Enayat, Zhi-Xiang Sun, Udai Raj Singh, Stefan Schmaus (Stuttgart) Samples: Y. Liu, C.T. Lin, MPI Stuttgart V. Tsurkan, J. Deisenhofer, A. Loidl, Universität Augsburg Shun Chi, Doug Bonn, UBC Vancouver Funding: Chris Stock, University of Edinburgh Scottish Universities Physics Alliance Netherlands Organization for Scientific Research Theory: (Rubicon Grant) A. Yaresko, MPI Stuttgart EPSRC C. Heil and F . Giustino, Oxford University

  3. Quantum Materials - High Tc Superconductivity May 11, 1987 K.A. Müller and J.G. Bednorz, Science 237 , 1133 (1987)

  4. Phase Diagrams of Quantum Materials C. Lester et al. , Nat. Mat. 14 , 373 (2015) S. Grigera et al. , Science 294 , 329 (2001) Nat. Phys. 8 , 514

  5. Instrumentation Magnet dewar • 1.6K (to ~20K) 16T SI STM • 7mK(MXC), 14T SI-STM, hold time up to ~140h • 1.6K, 9/5T vector magnet All with sample exchange and in-situ sample cleavage. STM head Rev. Sci. Instr. 82 , 113708 (2011); Rev. Sci. Instr. 84 , 013708 (2013); Rev. Sci. Instrum. 88 , 093705 (2017)

  6. Spectroscopic Mapping Spatial map of Periodic effects: local excitations: Quasiparticles Local gap size • • CDWs Effect of defects • • FFT Lattice distortions Inelastic excitations • • Local ordering •

  7. Spin-polarized STM With a magnetic tip on a magnetic sample:        E              Τ I ( V ) ( E ) ( E eV ) ( E ) ( E eV ) ( E , V , z ) f ( E eV , T ) f ( E , T ) d s t s t t s   Tip LDOS Sample LDOS R. Wiesendanger, Rev. Mod. Phys. 81, 1495

  8. Spin-polarized STM With a magnetic tip on a magnetic sample:        E              Τ I ( V ) ( E ) ( E eV ) ( E ) ( E eV ) ( E , V , z ) f ( E eV , T ) f ( E , T ) d s t s t t s   Tip LDOS Sample LDOS In constant current mode: tip will approach R. Wiesendanger, Rev. Mod. Phys. 81, 1495

  9. What is the Smoking Gun of Magnetic Imaging with STM ? 1. Change the magnetization of the tip 2. image the same place with the same tip

  10. Iron-based Superconductors Paglione&Greene, Nat. Phys. 6 , 645 (2010)

  11. Phase Diagram 100 tetragonal Temperature [K] 80 60 40 monoclinic orthorhombic 20 superconductivity 0 0.0 0.2 0.4 0.6 0.8 1.0 x [Fe 1+y Se x Te 1-x ] N. Katayama et al. , J. Phys. Soc. Jpn. 79 , 113702 (2010); Y. Mizuguchi and Y. Takano, J. Phys. Soc. Jpn. 79 , 102001 (2010)

  12. Phase Diagram Plaquette Order Diagonal Double Stripe Order Origin of complex magnetic order: Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123) • Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206) • Structural distortion driving double-stripe order (Glasbrenner et al., Nat. Phys. 11, 954) • E.E. Rodriguez et al. , Phys. Rev. B84, 064403 (2011)

  13. Fe 1+ δ Te Fe Te Cleavage 3.77Å plane

  14. Stripes in FeTe 1 b q Fe q Te Fe a q Te Te y q 0 b a -1 -1 0 1 q x 1 b q Fe q Te Fe a q Te Te 0 q y q AFM b a -1 Magnetic structure deduced -1 0 1 q x from Neutron Scattering Expected Pattern in Fourier Space

  15. Stripes in FeTe Non-magnetic tip Magnetic tip Some Fe defects gone …

  16. Magnetic Field 30 B=5T Height (pm) B=-5T 0

  17. Magnetic Field 10 z t Spin pol. (%) P -10 Largest spin polarization between Te atoms ! Science 345 , 653 (2014) Phys. Rev. B 91 , 161111 (2015)

  18. STM in a Vectormagnet Full 3D rotation of 5T Rev. Sci. Instr. 88, 093705 (2017)

  19. Results: Low excess Fe – Fe 1.06 Te X 1.8nm C.Trainer et al. arxiv/1802.05978 Y Z

  20. Reconstructing the magnetic structure Out of plane angle (degrees) out of plane component of 31 ° • Same periodicity, but different • magnetization direction than neutron scattering see also Hänke et al , Nat. Commun. 8, 13939

  21. Magnetic order at high excess Fe concentations x >0.12 Incommensurate order with q =0.4.

  22. Magnetic order at high excess Fe concentations x >0.12 Spin spiral! spin spiral rotating in the • bc plane full agreement with • neutron scattering

  23. Effect of removing surface Fe Fe 1+ d/2 Te Fe 1+ d Te

  24. Phase Diagram Plaquette Order Diagonal Double Stripe Order Origin of complex magnetic order: Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123) • Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206) • Structural distortion driving double-stripe order (Glasbrenner et al., Nat. Phys. 11, 954) • E.E. Rodriguez et al. , Phys. Rev. B84, 064403 (2011)

  25. Magnetic structure of Fe 1.1 Te/Fe 1.2 Te q a q b

  26. Relationship with field angle q a q b

  27. Resulting structure Spins order in a complex staggered structure forming two different spin spirals along both Fe-Fe directions.

  28. Construcing a magnetic phase diagram q a q b

  29. Magnetic Phase Diagram q a x =0.06 q b x =0.12 x =0.20

  30. Phase Diagram Origin of complex magnetic order: Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123) • Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206) • Structural distortion driving double-q order (Glasbrenner et al., Nat. Phys. 11, 954) • E.E. Rodriguez et al. , Phys. Rev. B84, 064403 (2011)

  31. Phase Diagram 100 0 % tetragonal 80 Tempe r a t u r e [ K ] Selenium 60 10 % 40 monoclinic orthorhombic 20 superconductivity 0 0.0 0.2 0.4 0.6 0.8 1.0 15 % x [Fe 1+y Se x Te 1-x ] N. Katayama et al. , J. Phys. Soc. Jpn. 79 , 113702 (2010); Y. Mizuguchi and Y. Takano, J. Phys. Soc. Jpn. 79 , 102001 (2010) see Aluru et al., arxiv/1711.10389

  32. Controlling Symmetry Breaking Electronic States

  33. Symmetry Breaking Electronic States in Iron Pnictides Ca(Fe 0.97 Co 0.03 ) 2 As 2 T.-M. Chuang et al. , Science 327 , 181 (2010)

  34. Symmetry breaking QPI 100 tetragonal Temperature [K] 80 60 40 monoclinic orthorhombic 20 superconductivity 0 0.0 0.2 0.4 0.6 0.8 1.0 x [Fe 1+y Se x Te 1-x ] Sci. Adv. 1 , e1500206 (2015)

  35. Strain-tuning in quantum materials Susceptibility Divergent nematic response in BaFe2As2 Chu JH et al. , Science , 337 , 710 (2012) Strain-induced enhancement of Superconductivity Steppke A et al. , Science , 355 , eaaf9398 (2017)

  36. STM Strain-device Voltage leads piezo-electric actuator brass body • Strain due to anisotropic thermal contraction (300 - > 4 K) ~ ≤0.3 % • Strain levels achieved by voltage tuning were ≤0.01 % Rev. Sci. Instr. 88, 093705 (2017)

  37. STM Strain-device Voltage leads strain piezo-electric actuator brass body [010] • Strain due to anisotropic thermal [100] contraction (300 - > 4 K) ~ ≤0.3 % • Strain levels achieved by voltage FOV displacement demonstrates strain tuning LiFeAs tuning were ≤0.01 %

  38. Structure of LiFeAs

  39. Strain along [100] black dashed - unstrained ( ± 5.8 mV) red-dashed - V = -300 V

  40. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  41. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  42. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  43. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  44. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  45. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  46. Strain along [110] 4 3 Normalized dI/dV 2 ε ||[110] 1 0 -10 0 10 Bias (mV) [010] [100]

  47. Modulated Phase in strained LiFeAs 1nm strain [010] [010] 5nm 5nm [100] [100] Unstrained LiFeAs Modulated phase (periodicity ~2.7 nm) 15 mV, 0.25 nA Inset: -50 mV, 0.3nA 15 mV, 50pA

  48. Origin of the modulation 2 16.1 K 12.6 K Normalized dI/dV 7.8 K 1 2 K 0 -10 -5 0 5 10 Bias (mV) Setpoints: 20 mV, 50 pA Superconductivity forms on top of modulated state

  49. Modulated superconductivity On stripes Off stripes 1.0 Unstrained Normalized dI/dV 20 g (a.u.) 10 0.5 Bias (mV) 0.4 0 0.2 -10 0.0 -20 0.0 -20 -10 0 10 20 0 40 80 120 Bias (mV) Distance (Å)

  50. Modulated superconductivity -6 +10 mV 20x10 -16 mV 2 (l(x,V)) 10 20 g (a.u.) σ 10 Bias (mV) 0.4 0 0 0.2 -10 0.15 q/q 0 0.0 -20 0.14 0 40 80 120 Distance (Å) -20 -10 0 10 20 Bias (mV)

  51. Modulated superconductivity positive bias [010] 20 g (a.u.) [100] 10 Bias (mV) 0.4 0 0.2 -10 0.0 -20 0 40 80 120 negative bias Distance (Å)

  52. Vortex cores in modulated phase Vortex (Stripe) B=9T Vortex (Unstrained) 0 T (Unstrained) Normalized dI/dV 0.6 mV 1 -0.6 mV strain strained 0 -10 0 10 Bias (mV) unstrained

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend