sterile neutrinos carlo giunti
play

Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and - PowerPoint PPT Presentation

Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica Teorica, Universit` a di Torino giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it 52nd Winter School of Theoretical Physics Ladek Zdroj, Poland


  1. Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica Teorica, Universit` a di Torino giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it 52nd Winter School of Theoretical Physics Ladek Zdroj, Poland 14-21 February 2016 C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 1/94

  2. Number of Flavor and Massive Neutrinos? 10 5 σ had [ nb ] Cross-section (pb) Z 2 ν ALEPH 3 ν 30 10 4 e + e − → hadrons DELPHI L3 4 ν OPAL 10 3 20 average measurements, error bars increased by factor 10 W + W - 10 2 CESR 10 DORIS PEP PETRA SLC TRISTAN KEKB PEP-II LEP I LEP II 10 0 86 88 90 92 94 0 20 40 60 80 100 120 140 160 180 200 220 E cm [ GeV ] Centre-of-mass energy (GeV) [LEP, Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008] � � Γ Z = Γ Z → ℓ ¯ ℓ + Γ Z → q ¯ q + Γ inv Γ inv = N ν Γ Z → ν ¯ ν ℓ = e ,µ,τ q � = t N ν = 2 . 9840 ± 0 . 0082 C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 2/94

  3. � e + e − → Z invisible − − − − → ν a ¯ ν a = ⇒ ν e ν µ ν τ a =active 3 light active flavor neutrinos N N ≥ 3 � mixing ⇒ ν α L = U α k ν kL α = e , µ, τ no upper limit! k =1 Mass Basis: ν 1 ν 2 ν 3 ν 4 ν 5 · · · Flavor Basis: ν e ν µ ν τ ν s 1 ν s 2 · · · ACTIVE STERILE N � ν α L = U α k ν kL α = e , µ, τ, s 1 , s 2 , . . . k =1 C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 3/94

  4. Sterile Neutrinos [Pontecorvo, Sov. Phys. JETP 26 (1968) 984] ◮ Sterile means no standard model interactions. ◮ Obviously no electromagnetic interactions as normal active neutrinos. ◮ Thus sterile means no standard weak interactions. ◮ But sterile neutrinos are not absolutely sterile: ◮ Gravitational interactions (cosmology). ◮ New non-standard interactions of the physics beyond the Standard Model which generates the masses of sterile neutrinos. ◮ Observables in terrestrial experiments: ◮ Disappearance of active neutrinos ν e , ν µ , ν τ into sterile neutrinos ν s due to active-sterile oscillations (neutral current deficit). ◮ Oscillations (disappearance and transitions) of active neutrinos due to the new masses. ◮ Kinematical effects of the new masses (e.g. β decay). ◮ Contribution of the new masses to some process (e.g. neutrinoless double- β decay). C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 4/94

  5. Extended Lepton Sector Q = I 3 + Y I I 3 Y 2   ν α L 1 / 2 0  1 / 2 L L = − 1  ℓ α L = α L − 1 / 2 − 1 ℓ α R = α R 0 0 − 2 − 1 ν s a R 0 0 0 0 α = e , µ, τ a = 1 , . . . , N s ◮ The right-handed sterile fields ν s a R belong to new physics beyond the Standard Model. ◮ Sterile neutrinos allow us to probe the new physics beyond the Standard Model. C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 5/94

  6. General Dirac-Majorana Mass Lagrangian L mass = L D mass + L L mass + L R mass N S � � L D ν α L M D mass = − α a ν s a R + H.c. α = e ,µ,τ a =1 mass = 1 � L L ν T α L C † M L αβ ν β L + H.c. 2 α,β = e ,µ,τ N S mass = 1 � L R ν T s a R C † M R ab ν s b R + H.c. 2 a , b =1     ν s 1 R � � ν eL ν (a) . ν (F) ν (a) ν (s) L  .  = = ν µ L R =   . L ν (s) c L   ν τ L R ν s Ns R � M L � M D L mass = 1 2 ν (F) T C † M ν (F) + H.c. M = M D T M R L L C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 6/94

  7. µ C − 1 = − γ µ , C † = C − 1 , C T = −C ◮ Charge conjugation matrix: C γ T C ( γ 5 ) T C − 1 = γ 5 ◮ Useful property: T ◮ Charge conjugation: ν (s) c = C ν (s) R R P L ≡ 1 − γ 5 P R ≡ 1 + γ 5 ◮ Left and right-handed chiral projectors: , 2 2 P 2 P 2 L = P L , R = P R , P L + P R = 1 , P L P R = P R P L = 0 ◮ P L ν (a) = ν (a) P R ν (a) P L ν (s) P R ν (s) R = ν (s) L , = 0, R = 0, L L R ◮ ν (s) c is left-handed: R T T P L ν (s) c = P L C ν (s) L ν (s) = C ( ν (s) = C P T R P L ) T R R R T γ 0 P L ) T = C ( ν (s) † P R γ 0 ) T = C ν (s) = C ( ν (s) † = ν (s) c R R R R P R ν (s) c = 0 R C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 7/94

  8. ◮ L mass has the structure of a Majorana mass Lagrangian � T � L mass = 1 ν (F) T C † M ν (F) − ν (F) L M † C ν (F) L L L 2 � � † ν (F) T C † M ν (F) = ν (F) † M † C ν (F) † T = ν (F) L γ 0 M † C ν (F) † T L L L L L T L M † C γ 0 T ν (F) † T = ν (F) L M † CC − 1 γ 0 C ν (F) † T = − ν (F) = − ν (F) L M † C ν (F) L L L ◮ ν (F) c ν (F) c = − ν (F) T = C ν L (F) T , C † L L L � � L mass = − 1 ν (F) c M ν (F) + ν (F) L M † ν (F) c L L L 2 C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 8/94

  9. � M L � M D ◮ In general, M is a complex symmetric matrix: M = M D T M R � � T ν (F) T C † M ν (F) ν (F) T C † M ν (F) = L L L L = − ν (F) T M T ( C † ) T ν (F) L L C † M T ν (F) = ν (F) T M = M T = ⇒ L L ν (F) = U ν (M) ◮ M can be diagonalized with the unitary transformation L L       ν eL · · · ν 1 L U e 1 U e 2 U e 3 U e 4 U eN ν µ L U µ 1 U µ 2 U µ 3 U µ 4 · · · U µ N ν 2 L             ν τ L · · · ν 3 L U τ 1 U τ 2 U τ 3 U τ 4 U τ N             = ν s 1 R U s 1 1 U s 1 2 U s 1 3 U s 1 4 · · · U s 1 N ν 4 L             . . . . . . . ...       . . . . . . . . . . . . . .       ν s Ns R · · · ν NL U s Ns 1 U s Ns 2 U s Ns 3 U s Ns 4 U s Ns N ◮ U is a unitary N × N mixing matrix with N = 3 + N s . C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 9/94

  10. U T M U = diag( m 1 , . . . , m N ) ◮ Diagonalization: with real and positive masses m 1 , . . . , m N . ◮ Mass Lagrangian in the mass basis: N L mass = 1 � kL C † ν kL − ν kL C ν kLT � � ν T m k 2 k =1 N = − 1 � � � kL ν kL + ν kL ν c ν c m k kL 2 k =1 N = − 1 � m k ν k ν k 2 k =1 ◮ Massive Majorana neutrino fields: ν k = ν kL + ν c ν k = ν c kL k ◮ In the general case of active-sterile neutrino mixing the massive neutrinos are Majorana particles. ◮ However, it is not excluded that the mixing is such that there are pairs of Majorana neutrino fields with exactly the same mass which form Dirac neutrino fields. C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 10/94

  11. Charged-Current Weak Interactions ◮ The physical effects of neutrino mixing appear in Weak Interactions. ◮ In the flavor basis where the mass matrix of the charged leptons is diagonal L CC = − g � ℓ α L γ ρ ν α L W † √ ρ + H.c. 2 α = e ,µ,τ N = − g � � ℓ α L γ ρ U α k ν kL W † √ ρ + H.c. 2 α = e ,µ,τ k =1 ◮ In matrix form L CC = − g ρ + H.c. = − g 2 ℓ L γ ρ ν (a) 2 ℓ L γ ρ U ν (M) L W † W † √ √ ρ + H.c. L ◮ Effective rectangular 3 × N mixing matrix: ν (a) = U ν (M) U = U | 3 × N L L C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 11/94

  12. ◮ Effective rectangular 3 × N mixing matrix:   · · · U e 1 U e 2 U e 3 U e 4 U eN U = · · · U µ 1 U µ 2 U µ 3 U µ 4 U µ N   · · · U τ 1 U τ 2 U τ 3 U τ 4 U τ N ◮ The number of physical mixing parameters is smaller than the number necessary to parameterize the N × N unitary matrix U . ◮ This is due to the arbitrariness of the mixing in the sterile sector, which does not affect weak interactions. Any linear combination of the sterile neutrinos is equivalent. ◮ The effective rectangular 3 × N mixing matrix is not unitary: UU † = 1 3 × 3 , U † U � = 1 N × N but C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 12/94

  13. ◮ How many mixing parameters? ◮ A rectangular 3 × N matrix depends on 6 N real parameters, but UU † = 1 3 × 3 = ⇒ 9 constraints N real parameters = 6 N − 9 = 6 (3 + N s ) − 9 = 9 + 6 N s ◮ But how many mixing angles and physical CP-violating phases? ◮ For example, we know that for N s = 0 three phases can be eliminated by rephasing the charged lepton fields and we have 3 mixing angles 3 physical CP-violating phases (one Dirac and 2 Majorana) ◮ Standard parameterization of the mixing matrix in three-neutrino mixing:     s 13 e − i δ 13 1 0 0 c 12 c 13 s 12 c 13 U (3 ν ) =  − s 12 c 23 − c 12 s 23 s 13 e i δ 13 c 12 c 23 − s 12 s 23 s 13 e i δ 13   e i λ 2  s 23 c 13 0 0         s 12 s 23 − c 12 c 23 s 13 e i δ 13 − c 12 s 23 − s 12 c 23 s 13 e i δ 13 e i λ 3 0 0 c 23 c 13 C. Giunti − Sterile Neutrinos − 52nd Winter School of Theoretical Physics − 19-20 Feb 2016 − 13/94

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend