mass and mixing global analysis carlo giunti
play

Mass and Mixing, Global Analysis Carlo Giunti INFN, Torino, Italy - PowerPoint PPT Presentation

Mass and Mixing, Global Analysis Carlo Giunti INFN, Torino, Italy Rencontres du Vietnam 2017: Neutrinos Qui Nhon, Vietnam, 16-22 July 2017 C. Giunti Mass and Mixing, Global Analysis Rencontres du Vietnam 2017: Neutrinos 17 July 2017


  1. Mass and Mixing, Global Analysis Carlo Giunti INFN, Torino, Italy Rencontres du Vietnam 2017: Neutrinos Qui Nhon, Vietnam, 16-22 July 2017 C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 1/34

  2. Fermion Mass Spectrum 10 12 t 10 11 b 10 10 c 10 9 τ s 10 8 ν τ µ d 10 7 u 10 6 ν µ e 10 5 m [eV] 10 4 10 3 10 2 10 ν e ν 1 ν 2 ν 3 1 10 − 1 10 − 2 10 − 3 10 − 4 C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 2/34

  3. Neutrino Mixing Left-handed Flavor Neutrinos produced in Weak Interactions | ν e , −� | ν µ , −� | ν τ , −� H CC = g W ρ ( ν eL γ ρ e L + ν µ L γ ρ µ L + ν τ L γ ρ τ L ) + H.c. √ 2 � � U ∗ Fields ν α L = U α k ν kL = ⇒ | ν α , −� = α k | ν k , −� States k k | ν 1 , −� | ν 2 , −� | ν 3 , −� Left-handed Massive Neutrinos propagate from Source to Detector   U e 1 U e 2 U e 3 3 × 3 Unitary Mixing Matrix: U = U µ 1 U µ 2 U µ 3   U τ 1 U τ 2 U τ 3 C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 3/34

  4. Neutrino Oscillations | ν ( t = 0) � = | ν α � = U ∗ α 1 | ν 1 � + U ∗ α 2 | ν 2 � + U ∗ α 3 | ν 3 � ν 1 ν α ν β ν 2 ν 3 L source detector α 1 e − iE 1 t | ν 1 � + U ∗ α 2 e − iE 2 t | ν 2 � + U ∗ α 3 e − iE 3 t | ν 3 � � = | ν α � | ν ( t > 0) � = U ∗ k = p 2 + m 2 E 2 t = L k � � ∆ m 2 kj L P ν α → ν β ( L ) = |� ν β | ν ( L ) �| 2 = � U β k U ∗ α k U ∗ β j U α j exp − i 2 E k , j the oscillation probabilities depend on U and ∆ m 2 kj ≡ m 2 k − m 2 j C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 4/34

  5. � ∆ m 2 L � L osc = 4 π E P ν α → ν β = sin 2 2 ϑ sin 2 2 ν -mixing: = ⇒ ∆ m 2 4 E 1 0.8 sin 2 2 ϑ P ν α → ν β 0.6 0.4 0.2 0 L osc L Tiny neutrino masses lead to observable macroscopic oscillation distances! � km ∆ m 2 � 10 − 1 eV 2  m � 10 short-baseline experiments MeV GeV   � km ∆ m 2 � 10 − 3 eV 2  10 3 m � long-baseline experiments  L  MeV GeV E � ∆ m 2 � 10 − 4 eV 2 10 4 km atmospheric neutrino experiments  GeV  ∆ m 2 � 10 − 11 eV 2   10 11 m solar neutrino experiments  MeV Neutrino oscillations are the optimal tool to reveal tiny neutrino masses! C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 5/34

  6. Three-Neutrino Mixing Paradigm Standard Parameterization of Mixing Matrix (as CKM)         0 s 13 e − i δ 13 1 0 0 c 13 c 12 s 12 0 1 0 0 U =         0 e i λ 21 0 0 1 0 − s 12 c 12 0 0 c 23 s 23                 − s 13 e i δ 13 0 e i λ 31 0 − s 23 c 23 c 13 0 0 1 0 0     s 13 e − i δ 13 c 12 c 13 s 12 c 13 1 0 0 =     − s 12 c 23 − c 12 s 23 s 13 e i δ 13 c 12 c 23 − s 12 s 23 s 13 e i δ 13 0 e i λ 21 0 s 23 c 13         s 12 s 23 − c 12 c 23 s 13 e i δ 13 − c 12 s 23 − s 12 c 23 s 13 e i δ 13 e i λ 31 c 23 c 13 0 0 0 ≤ ϑ ab ≤ π c ab ≡ cos ϑ ab s ab ≡ sin ϑ ab 0 ≤ δ 13 , λ 21 , λ 31 < 2 π 2  3 Mixing Angles: ϑ 12 , ϑ 23 , ϑ 13 OSCILLATION  1 CPV Dirac Phase: δ 13 PARAMETERS 2 independent ∆ m 2 kj ≡ m 2 k − m 2 j : ∆ m 2 21 , ∆ m 2  31 2 CPV Majorana Phases: λ 21 , λ 31 ⇐ ⇒ | ∆ L | = 2 processes C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 6/34

  7. Three-Neutrino Mixing Ingredients         s 13 e − i δ 13 1 0 0 c 13 0 c 12 s 12 0 1 0 0 U =         e i λ 21 0 0 1 0 0 0 0 c 23 s 23 − s 12 c 12                 − s 13 e i δ 13 e i λ 31 0 − s 23 c 23 0 c 13 0 0 1 0 0    SNO, Borexino  Solar  Super-Kamiokande     21 ≃ 7 . 4 × 10 − 5 eV 2     ν e → ν µ , ν τ ∆ m 2 S = ∆ m 2  GALLEX/GNO, SAGE      → Homestake, Kamiokande sin 2 ϑ S = sin 2 ϑ 12 ≃ 0 . 30     VLBL Reactor    (KamLAND)  ¯ ν e disappearance  C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 7/34

  8. Three-Neutrino Mixing Ingredients         s 13 e − i δ 13 1 0 0 c 13 0 c 12 s 12 0 1 0 0 U =         e i λ 21 0 0 1 0 0 0 0 c 23 s 23 − s 12 c 12                 − s 13 e i δ 13 e i λ 31 0 − s 23 c 23 0 c 13 0 0 1 0 0    Super-Kamiokande Atmospheric   Kamiokande, IMB    ν µ → ν τ    MACRO, Soudan-2        31 | ≃ 2 . 5 × 10 − 3 eV 2 ∆ m 2 A ≃ | ∆ m 2   � �   LBL Accelerator K2K, MINOS → sin 2 ϑ A = sin 2 ϑ 23 ≃ 0 . 50 ν µ disappearance T2K, NO ν A            LBL Accelerator    (OPERA)  ν µ → ν τ  C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 8/34

  9. Three-Neutrino Mixing Ingredients         s 13 e − i δ 13 1 0 0 c 13 0 c 12 s 12 0 1 0 0 U =         e i λ 21 0 0 1 0 0 0 0 c 23 s 23 − s 12 c 12                 − s 13 e i δ 13 e i λ 31 0 − s 23 c 23 0 c 13 0 0 1 0 0 LBL Accelerator  (T2K, MINOS, NO ν A)  ν µ → ν e  31 | ≃ 2 . 5 × 10 − 3 eV 2   ∆ m 2 A ≃ | ∆ m 2     → sin 2 ϑ 13 ≃ 0 . 022   � � LBL Reactor  Daya Bay, RENO    ν e disappearance ¯  Double Chooz C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 9/34

  10. Mass Ordering ν e ν µ ν τ m 2 m 2 ν 2 ν 3 ∆ m 2 SOL ν 1 ∆ m 2 ∆ m 2 ATM ATM ν 2 ∆ m 2 SOL ν 1 ν 3 Normal Ordering Inverted Ordering ∆ m 2 31 > ∆ m 2 ∆ m 2 32 < ∆ m 2 32 > 0 31 < 0 absolute scale is not determined by neutrino oscillation data C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 10/34

  11. CP Transformation Right-handed antineutrinos are described by CP-conjugated states C − ⇀ Particle − Antiparticle ↽ P − ⇀ Left-Handed Helicity − Right-Handed Helicity ↽ CP � � − − ⇀ | ν α , −� = U ∗ α k | ν k , −� | ¯ ν α , + � = U α k | ¯ ν k , + � ↽ − − k k CP − − ⇀ In oscillation probabilities: Neutrino U U ∗ Antineutrino ↽ − − � � ∆ m 2 kj L � sin 2 � � P ν α → ν β = δ αβ − 4 Re U ∗ α k U β k U α j U ∗ ← CP Even β j 4 E k > j � � ∆ m 2 kj L � � � + 2 Im U ∗ α k U β k U α j U ∗ sin ← CP Odd β j 2 E k > j Survival probabilities: P ν α → ν α = P ¯ CPT ν α → ¯ ν α C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 11/34

  12. CP Asymmetries A CP αβ = P ν α → ν β − P ¯ ν α → ¯ ν β � ∆ m 2 � ∆ m 2 � ∆ m 2 � � � 21 L 31 L 32 L = 16 J αβ sin sin sin 4 E 4 E 4 E � U ∗ α 1 U β 1 U α 2 U ∗ � J αβ = Im = ± J CP Jarlskog Invariant β 2 U ∗ µ 1 U e 1 U µ 2 U ∗ = c 12 s 12 c 23 s 23 c 2 � � J CP = Im 13 s 13 sin δ 13 e 2 J CP � = 0 ⇐ ⇒ ϑ 12 , ϑ 23 , ϑ 13 � = 0 , π/ 2 and δ 13 � = 0 , π Necessary conditions for observation of CP violation: ◮ Sensitivity to all mixing angles, including small ϑ 13 . ◮ Sensitivity to oscillations due to ∆ m 2 21 and ∆ m 2 31 . C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 12/34

  13. LBL ν µ → ν e and ¯ ν µ → ¯ ν e ∆ = ∆ m 2 √ 31 L A = 2 EV V = 2 G F N e ∆ m 2 4 E 31 ∆ m 2 21 / ∆ m 2 sin θ 13 ≪ 1 31 ≪ 1 octant ↓ sin 2 [(1 − A )∆] ν µ → ν e ≃ sin 2 2 ϑ 13 P LBL sin 2 ϑ 23 (1 − A ) 2 +∆ m 2 )sin( A ∆) sin[(1 − A )∆] 21 sin 2 ϑ 13 sin 2 ϑ 12 sin 2 ϑ 23 cos(∆ + δ 13 ∆ m 2 1 − A A ↑ 31 � 2 � ∆ m 2 sin 2 ( A ∆) CPV sin 2 2 ϑ 12 cos 2 ϑ 23 21 + ∆ m 2 A 2 31 ∆ m 2 ∆ m 2 NO: 31 > 0 IO: 31 < 0 for antineutrinos: δ 13 → − δ 13 (CPV) and A → − A (Fake CPV!) [see: Mezzetto, Schwetz, JPG 37 (2010) 103001] C. Giunti − Mass and Mixing, Global Analysis − Rencontres du Vietnam 2017: Neutrinos − 17 July 2017 − 13/34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend