sterile neutrinos at the ev scale
play

Sterile Neutrinos at the eV Scale Whence, Where, and Whither? - PowerPoint PPT Presentation

Sterile Neutrinos at the eV Scale Whence, Where, and Whither? Joachim Kopp (CERN & University of Mainz, Germany) KEKKIASNCTS Theory Workshop | | December 47, 2018 In this Talk The Neutrino Flavor Anomalies LSND


  1. Sterile Neutrinos at the eV Scale Whence, Where, and Whither? Joachim Kopp (CERN & University of Mainz, Germany) KEK—KIAS—NCTS Theory Workshop | つくば市 | December 4—7, 2018

  2. In this Talk The Neutrino Flavor Anomalies LSND & MiniBooNE: Anomalous ν μ → ν e oscillations? Reactor and Gallium Anomalies: Where are the missing ν e ? Sterile Neutrinos: Global Status Cosmological Constraints (and how to evade them) � 2

  3. The Neutrino Flavor Anomalies A Hint for Sterile Neutrinos?

  4. Anomalies in Short Baseline Oscillations � 4

  5. Anomalies in Short Baseline Oscillations LSND / MiniBooNE: anomalous oscillations ν µ → ν e LSND 2001 MiniBooNE 2018 � 4

  6. Anomalies in Short Baseline Oscillations LSND / MiniBooNE: anomalous oscillations ν µ → ν e Reactor & Gallium Experiments: anomalous disappearance ν e Mention et al., 1101.2755 DANSS Collaboration @ Neutrino 2018 � 4

  7. Anomalies in Short Baseline Oscillations LSND / MiniBooNE: anomalous oscillations ν µ → ν e Reactor & Gallium Experiments: anomalous disappearance ν e Baselines too short for SM oscillations! Mention et al., 1101.2755 DANSS Collaboration @ Neutrino 2018 � 4

  8. Sterile Neutrinos Definition: sterile neutrino = SM singlet fermion Very generic extension of SM can be leftover of extended gauge multiplet Useful phenomenological tool can explain ν masses (seesaw mechanism, m ~ TeV…M Pl ) can explain cosmic baryon asymmetry (leptogenesis, m ≫ 100 GeV) can explain dark matter (m ~ keV) can explain oscillation anomalies (m ~ eV) 
 Promote mixing matrix to 4 x 4, oscillation formula unchanged: X ⇥ � � ⇤ U ∗ α j U β j U α k U ∗ P α → β = − i E j − E k T β k exp j,k � 5

  9. The Reactor Anomaly ν̅ e flux from nuclear reactors is ~ 3.5% (~ 3 σ ) below prediction ➟ oscillations of ν̅ e into sterile neutrinos ν̅ s ? Mueller et al. 1101.2663, Huber 1106.0687 � 6

  10. The Reactor Anomaly ν̅ e flux from nuclear reactors is ~ 3.5% (~ 3 σ ) below prediction ➟ oscillations of ν̅ e into sterile neutrinos ν̅ s ? 2 = 0.44 eV 2 , sin 2 2 θ 14 = 0.13 Δ m 2 = 1.75 eV 2 , sin 2 2 θ 14 = 0.10 Δ m observed / no osc. expected 1.1 2 = 0.9 eV 2 , sin 2 2 θ 14 = 0.057 Δ m 1 Gosgen 0.9 Gosgen Bugey3 Bugey3,4 Krasn Rovno SRP Bugey3 Krasn Rovno, SRP Krasn Gosgen 0.8 ILL 0.7 10 100 distance from reactor [m] � 6

  11. Predicting Reactor Neutrino Fluxes ν̅ e flux from nuclear reactors is ~ 3.5% (~ 3 σ ) below prediction ➟ oscillations of ν̅ e into sterile neutrinos ν̅ s ? Predicting reactor ν̅ e fluxes: Use measured β spectra from 235 U, 238 U, 239 Pu, 241 Pu fission Convert to ν̅ e spectrum For single β decay: E ν = Q — E e Reality: thousands of decay branches, many not known precisely Use (incomplete) information from nuclear data tables … … complemented by a fit to “effective decay branches” Mueller et al. 1101.2663, Huber 1106.0687 � 7

  12. Corrections to Reactor Neutrino Fluxes ν̅ e flux from nuclear reactors is ~ 3.5% below prediction Important corrections ν̅ e Finite size of nucleus e L σ µ ν ν L ) W µ ν L ⊃ (¯ Weak magnetism Screening of nuclear charge: Z → Z eff Radiative corrections ( γ emission) Non-equilibrium effects in measured β spectra Neutron lifetime uncertainty Mueller et al. 1101.2663, Huber 1106.0687 � 8

  13. Isotope-Dependent Fluxes � 9

  14. Isotope-Dependent Fluxes Reactor fuel composition evolves with time (“burnup”) Daya Bay 1704.01082 � 9

  15. Isotope-Dependent Fluxes Reactor fuel composition evolves with time (“burnup”) Effective fraction of 239 Pu fissions W th,r ¯ P 6 P ee,r f i,r ( t ) r =1 L 2 r E r ( t ) F i ( t ) = W th,r ¯ P 6 P ee,r Daya Bay 1704.01082 r =1 L 2 r E r ( t ) � 9

  16. Isotope-Dependent Fluxes Reactor fuel composition evolves with time (“burnup”) Measure inverse β decay rate as function of F 239 Sterile Neutrino: same deficit for all isotopes 
 Flux Misprediction: isotope-dependent deficits Daya Bay 1704.01082 � 9

  17. Sterile Neutrinos or Flux Uncertainty? Daya Bay 1704.01082 � 10

  18. Sterile Neutrinos or Flux Uncertainty? 235 U prediction off 239 Pu prediction OK Daya Bay 1704.01082 � 10

  19. Sterile Neutrinos or Flux Uncertainty? 235 U prediction off 239 Pu prediction OK Sterile Neutrino Models Daya Bay 1704.01082 � 10

  20. Sterile Neutrinos or Flux Uncertainty? � 11

  21. 
 
 Sterile Neutrinos or Flux Uncertainty? Full analysis: Compare fit with free 235 U, 238 U, 239 Pu, 241 Pu fluxes 
 to fit with fixed fluxes + ν s 
 Δχ 2 = 7.9 � 11

  22. 
 
 Sterile Neutrinos or Flux Uncertainty? Full analysis: Compare fit with free 235 U, 238 U, 239 Pu, 241 Pu fluxes 
 to fit with fixed fluxes + ν s 
 Δχ 2 = 6.3 (with theoretical uncertainties) Dentler Hernández JK Maltoni Schwetz 1709.04294 � 11

  23. 
 
 Sterile Neutrinos or Flux Uncertainty? Full analysis: Compare fit with free 235 U, 238 U, 239 Pu, 241 Pu fluxes 
 to fit with fixed fluxes + ν s 
 Δχ 2 = 6.3 (with theoretical uncertainties) But both hypothesis yield excellent goodness of fit Fluxes within errors + ν s : p = 0.18 Fluxes free : p = 0.73 Δχ 2 (sterile neutrino vs. free fluxes) : p = 0.007 Dentler Hernández JK Maltoni Schwetz 1709.04294 � 11

  24. Caveats Daya Bay method assumes flux from each isotope is time and burnup-independent. � 12

  25. 
 Caveats Non-Equilibrium Effects Non-Linear Isotopes Some relevant decays are Neutron capture 
 out of equilibrium 
 on fission products 90 Sr 90 Y t 1/2 =29 yrs t 1/2 =2.7 days Q=0.55 MeV Q=2.2 MeV 90 Zr Extra neutron flux/burnup Extra t -dependence 
 dependence in ν flux in ν flux Jaffke Huber 1510.08948, Huber Sharma, in preparation � 13

  26. Improved Analysis Huber Sharma, in preparation � 14

  27. Improved Analysis χ 2 ( Δχ 2 ) 1/2 Best Fit 5.8 Uncorrected Model 15.0 3 σ Corrected Model 8.5 1.6 σ Huber Sharma, in preparation � 14

  28. Sterile Neutrinos Global Status

  29. Global Fit to ν e and ν̅ e Disappearance 95 % , 99 % CL 10 1 2 dof All 2 [ eV 2 ] � e disapp 10 0 � m 41 All Reactors C12 G a l l i u m Solar 10 - 1 10 - 3 10 - 2 10 - 1 | U e4 2 Dentler Hernández JK Maltoni Schwetz 1709.04294 Dentler Hernández JK Machado Maltoni Martinez Schwetz, in preparation � 16

  30. � ν μ → ν e appearance 99 % CL OPERA ( 2013 ) ICARUS ( 2014 ) 10 1 2 dof Mini - BooNE � NOMAD 2 [ eV 2 ] E776 + solar LSND 10 0 � m 41 Combined KARMEN MiniBooNE � 10 - 1 w / o DiF LSND Combined 10 - 3 10 - 2 10 - 1 sin 2 2 � � e Dentler Hernández JK Machado Maltoni Martinez Schwetz, in preparation � 17

  31. � ν μ → ν e appearance 99 % CL OPERA ( 2013 ) ICARUS ( 2014 ) 10 1 2 dof Mini - BooNE � NOMAD 2 [ eV 2 ] E776 + solar LSND 10 0 � m 41 Global fit to ν e appearance data consistent. Combined KARMEN MiniBooNE � 10 - 1 w / o DiF LSND Combined 10 - 3 10 - 2 10 - 1 sin 2 2 � � e Dentler Hernández JK Machado Maltoni Martinez Schwetz, in preparation � 17

  32. 
 
 
 
 
 
 
 Relation Between Oscillation Channels Oscillation channels are related: 
 P ν e → ν e ' 1 � 2 | U e 4 | 2 (1 � | U e 4 | 2 ) P ν µ → ν µ ' 1 � 2 | U µ 4 | 2 (1 � | U µ 4 | 2 ) P ν µ → ν e ' 2 | U e 4 | 2 | U µ 4 | 2 4 π E/ ∆ m 2 41 ⌧ L ⌧ 4 π E/ ∆ m 2 (for ) 31 Models can be over-constrained. � 18

  33. Global Fit in 3+1 Model 99 % CL S 2 dof H D 10 1 C (-) / � � (-) �� e (-) � e Free Fixed 2 [ eV 2 ] 10 0 � m 41 MINOS / MINOS + M B d i s a p p 10 - 1 Null DC + SK results + IC combined 10 - 2 10 - 1 | U � 4 2 Dentler Hernández JK Machado Maltoni Martinez Schwetz, in preparation see also works by Collin Argüelles Conrad Shaevitz, e.g. 1607.00011, Gariazzo Giunti Laveder Li, e.g. 1703.00860 � 19

  34. Global Fit in 3+1 Model Reactor + Gallium Anomalies, 99 % CL S 2 dof H LSND, MiniBooNE D 10 1 C (-) / � � (-) �� e (-) � e Free Fixed 2 [ eV 2 ] 10 0 � m 41 MINOS / MINOS + M B d i s a p p 10 - 1 Null DC + SK results + IC combined 10 - 2 10 - 1 | U � 4 2 Dentler Hernández JK Machado Maltoni Martinez Schwetz, in preparation see also works by Collin Argüelles Conrad Shaevitz, e.g. 1607.00011, Gariazzo Giunti Laveder Li, e.g. 1703.00860 � 19

  35. Global Fit in 3+1 Model 99 % CL CDHS 2 dof 10 1 (-) / � � (-) �� e (-) � e Free Fixed 2 [ eV 2 ] 10 0 � m 41 MINOS / MINOS + MB disapp 10 - 1 Null DC + SK results + IC combined Dentler et al. 
 10 - 2 10 - 1 in preparation | U � 4 2 χ 2 / dof Δ χ 2 glob Δ χ 2 PG / dof p PG ν μ disapp 468.9 / 504 5.9 ν e app+disapp 628.6 / 537 17.5 Combined 1120.9 / 1109 23.4 / 2 8.3 × 10 -6 � 20

  36. Global Fit in 3+1 Model 99 % CL CDHS 2 dof 10 1 (-) / � � (-) �� e (-) � e Free Fixed 2 [ eV 2 ] Parameter Goodness-of-Fit Test: 10 0 � m 41 Quantifies penalty for combining data sets MINOS / MINOS + MB disapp Maltoni Schwetz hep-ph/0304176 10 - 1 Null DC + SK results + IC combined Dentler et al. 
 10 - 2 10 - 1 in preparation | U � 4 2 χ 2 / dof Δ χ 2 glob Δ χ 2 PG / dof p PG ν μ disapp 468.9 / 504 5.9 ν e app+disapp 628.6 / 537 17.5 Combined 1120.9 / 1109 23.4 / 2 8.3 × 10 -6 � 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend