on smallness condition of initial data for le jan
play

On smallness condition of initial data for Le JanSznitman cascade of - PowerPoint PPT Presentation

On smallness condition of initial data for Le JanSznitman cascade of the Navier-Stokes equations Tuan Pham Oregon State University October 14, 2019 1/21 Tuan Pham (Oregon State University) October 14, 2019 1 / 21 NSE, mild solutions R d


  1. On smallness condition of initial data for Le Jan–Sznitman cascade of the Navier-Stokes equations Tuan Pham Oregon State University October 14, 2019 1/21 Tuan Pham (Oregon State University) October 14, 2019 1 / 21

  2. NSE, mild solutions R d × (0 , ∞ ) ,  ∂ t u − ∆ u + u · ∇ u + ∇ p = 0 in  R d × (0 , ∞ ) , ( NSE ) : div u = 0 in R d . u ( · , 0) = u 0 in  2/21 Tuan Pham (Oregon State University) October 14, 2019 2 / 21

  3. NSE, mild solutions R d × (0 , ∞ ) ,  ∂ t u − ∆ u + u · ∇ u + ∇ p = 0 in  R d × (0 , ∞ ) , ( NSE ) : div u = 0 in R d . u ( · , 0) = u 0 in  Integro-differential equation: � t u ( x , t ) = e ∆ t u 0 − e ∆ s P div [ u ( t − s ) ⊗ u ( t − s )] ds . 0 2/21 Tuan Pham (Oregon State University) October 14, 2019 2 / 21

  4. NSE, mild solutions R d × (0 , ∞ ) ,  ∂ t u − ∆ u + u · ∇ u + ∇ p = 0 in  R d × (0 , ∞ ) , ( NSE ) : div u = 0 in R d . u ( · , 0) = u 0 in  Integro-differential equation: � t u ( x , t ) = e ∆ t u 0 − e ∆ s P div [ u ( t − s ) ⊗ u ( t − s )] ds . 0 Mild solutions – obtained by Picard’s iteration: ≡ v 0 0 v n = U + B ( v n − 1 , v n − 1 ) u = lim v n 2/21 Tuan Pham (Oregon State University) October 14, 2019 2 / 21

  5. NSE, mild solutions R d × (0 , ∞ ) ,  ∂ t u − ∆ u + u · ∇ u + ∇ p = 0 in  R d × (0 , ∞ ) , ( NSE ) : div u = 0 in R d . u ( · , 0) = u 0 in  Integro-differential equation: � t u ( x , t ) = e ∆ t u 0 − e ∆ s P div [ u ( t − s ) ⊗ u ( t − s )] ds . 0 Mild solutions – obtained by Picard’s iteration: ≡ v 0 0 v n = U + B ( v n − 1 , v n − 1 ) u = lim v n 2/21 Tuan Pham (Oregon State University) October 14, 2019 2 / 21

  6. NSE, mild solutions � Global existence and uniqueness in L ∞ t L 2 x for d = 2: Leray (1933). � Local existence and uniqueness in subcritical spaces: Leray (‘34), Kato (‘84),. . . � Global existence in critical spaces for small initial data: Kato (‘84), Koch-Tataru (2001),. . . ? Global existence for arbitrarily large initial data. 3/21 Tuan Pham (Oregon State University) October 14, 2019 3 / 21

  7. NSE, weak solutions Weak formulation = diff. eq. in distribution sense + energy inequality. Energy solutions: Leray ‘34, Hopf ‘51 � t | u ( x , t ) | 2 | u 0 ( x ) | 2 � � � R d |∇ u | 2 dxds ≤ dx + dx 2 2 R d R d 0 4/21 Tuan Pham (Oregon State University) October 14, 2019 4 / 21

  8. NSE, weak solutions Weak formulation = diff. eq. in distribution sense + energy inequality. Energy solutions: Leray ‘34, Hopf ‘51 � t | u ( x , t ) | 2 | u 0 ( x ) | 2 � � � R d |∇ u | 2 dxds ≤ dx + dx 2 2 R d R d 0 Local energy solutions: Scheffer ‘77, CKN ‘82, L-R 2002,. . . ∞ ∞ � | u | 2 � | u | 2 � � � � � � |∇ u | 2 φ dxdt ≤ ( ∂ t φ + ∆ φ ) + + p u ∇ φ dxdt 2 2 0 0 R d R d 4/21 Tuan Pham (Oregon State University) October 14, 2019 4 / 21

  9. NSE, weak solutions Weak formulation = diff. eq. in distribution sense + energy inequality. Energy solutions: Leray ‘34, Hopf ‘51 � t | u ( x , t ) | 2 | u 0 ( x ) | 2 � � � R d |∇ u | 2 dxds ≤ dx + dx 2 2 R d R d 0 Local energy solutions: Scheffer ‘77, CKN ‘82, L-R 2002,. . . ∞ ∞ � | u | 2 � | u | 2 � � � � � � |∇ u | 2 φ dxdt ≤ ( ∂ t φ + ∆ φ ) + + p u ∇ φ dxdt 2 2 0 0 R d R d � Global existence ? Uniqueness, smoothness 4/21 Tuan Pham (Oregon State University) October 14, 2019 4 / 21

  10. NSE, weak solutions Partial regularity: Let u 0 ∈ L 2 . How big is the set of singular points S ⊂ R d × (0 , ∞ )? 5/21 Tuan Pham (Oregon State University) October 14, 2019 5 / 21

  11. NSE, weak solutions Partial regularity: Let u 0 ∈ L 2 . How big is the set of singular points S ⊂ R d × (0 , ∞ )? 2 d H 1 ( R d ) ֒ d − 2 ( R d ) → L d = 2: S = ∅ (Leray ‘33). d = 3: H 1 par ( S ) = 0 (CKN ‘82). d = 4: H 2 par ( S ) = 0 (Dong-Gu 2014, Wang-Wu ‘14). d = 5 (stationary): S = ∅ (Struwe 1995). d = 6 (stationary): H 2 ( S ) = 0 (Dong-Strain 2012). 5/21 Tuan Pham (Oregon State University) October 14, 2019 5 / 21

  12. Fourier transformed Navier-Stokes (FNS) � t � u ( ξ, t ) = e −| ξ | 2 t ˆ e −| ξ | 2 s | ξ | ˆ u 0 ( ξ )+ c 0 R d ˆ u ( η, t − s ) ⊙ ξ ˆ u ( ξ − η, t − s ) d η ds 0 where a ⊙ ξ b = − i ( e ξ · b )( π ξ ⊥ a ). 6/21 Tuan Pham (Oregon State University) October 14, 2019 6 / 21

  13. Fourier transformed Navier-Stokes (FNS) � t � u ( ξ, t ) = e −| ξ | 2 t ˆ e −| ξ | 2 s | ξ | ˆ u 0 ( ξ )+ c 0 R d ˆ u ( η, t − s ) ⊙ ξ ˆ u ( ξ − η, t − s ) d η ds 0 where a ⊙ ξ b = − i ( e ξ · b )( π ξ ⊥ a ). Normalization to (FNS): LJS ‘97, Bhattacharya et al (2003) e − t | ξ | 2 χ 0 ( ξ ) χ ( ξ, t ) = � t � e − s | ξ | 2 | ξ | 2 + R d χ ( η, t − s ) ⊙ ξ χ ( ξ − η, t − s ) H ( η | ξ ) d η ds 0 u / h and H ( η | ξ ) = h ( η ) h ( ξ − η ) where χ = c 0 ˆ . | ξ | h ( ξ ) h : majorizing kernel , i.e. h ∗ h = | ξ | h . 6/21 Tuan Pham (Oregon State University) October 14, 2019 6 / 21

  14. Cascade structure of FNS 7/21 Tuan Pham (Oregon State University) October 14, 2019 7 / 21

  15. Cascade structure of FNS Define a stochastic multiplicative functional recursively as � χ 0 ( ξ ) if T 0 > t , X FNS ( ξ, t ) = X (1) FNS ( W 1 , t − T 0 ) ⊙ ξ X (2) FNS ( ξ − W 1 , t − T 0 ) T 0 ≤ t . if 7/21 Tuan Pham (Oregon State University) October 14, 2019 7 / 21

  16. Closed form of X FNS Consider the following event: On this event, X FNS ( ξ, t ) = ( χ 0 ( W 11 ) ⊙ W 1 χ 0 ( W 12 )) ⊙ ξ χ 0 ( W 2 ) . 8/21 Tuan Pham (Oregon State University) October 14, 2019 8 / 21

  17. Closed form of X FNS Consider the following event: On this event, X FNS ( ξ, t ) = ( χ 0 ( W 11 ) ⊙ W 1 χ 0 ( W 12 )) ⊙ ξ χ 0 ( W 2 ) . Three ingredients: clocks, branching process, product. Cascade structure = clocks + branching process. 8/21 Tuan Pham (Oregon State University) October 14, 2019 8 / 21

  18. FNS: mild solutions, cascade solutions e − t | ξ | 2 χ 0 ( ξ ) χ ( ξ, t ) = � t � e − s | ξ | 2 | ξ | 2 + R d χ ( η, t − s ) ⊙ ξ χ ( ξ − η, t − s ) H ( η | ξ ) d η ds 0 Mild solution: γ 0 ≡ 0 e − t | ξ | 2 χ 0 + ¯ γ n = B ( γ n − 1 , γ n − 1 ) χ = lim γ n 9/21 Tuan Pham (Oregon State University) October 14, 2019 9 / 21

  19. FNS: mild solutions, cascade solutions e − t | ξ | 2 χ 0 ( ξ ) χ ( ξ, t ) = � t � e − s | ξ | 2 | ξ | 2 + R d χ ( η, t − s ) ⊙ ξ χ ( ξ − η, t − s ) H ( η | ξ ) d η ds 0 Mild solution: γ 0 ≡ 0 e − t | ξ | 2 χ 0 + ¯ γ n = B ( γ n − 1 , γ n − 1 ) χ = lim γ n Cascade solution ( ∼ LJS 1997): χ ( ξ, t ) = E ξ, t X FNS 9/21 Tuan Pham (Oregon State University) October 14, 2019 9 / 21

  20. FNS: mild solutions, cascade solutions e − t | ξ | 2 χ 0 ( ξ ) χ ( ξ, t ) = � t � e − s | ξ | 2 | ξ | 2 + R d χ ( η, t − s ) ⊙ ξ χ ( ξ − η, t − s ) H ( η | ξ ) d η ds 0 Mild solution: γ 0 ≡ 0 e − t | ξ | 2 χ 0 + ¯ γ n = B ( γ n − 1 , γ n − 1 ) χ = lim γ n Cascade solution ( ∼ LJS 1997): χ ( ξ, t ) = E ξ, t X FNS Two issues: (1) stochastic explosion and (2) existence of expectation . 9/21 Tuan Pham (Oregon State University) October 14, 2019 9 / 21

  21. ✶ Explosion Branching process may never stop, potentially making X FNS not well-defined. Property of cascade structure, not of product. Depending only on the majorizing kernel h and the clocks. 10/21 Tuan Pham (Oregon State University) October 14, 2019 10 / 21

  22. ✶ Explosion Branching process may never stop, potentially making X FNS not well-defined. Property of cascade structure, not of product. Depending only on the majorizing kernel h and the clocks. 3D self-similar cascade h dilog ( ξ ) = C | ξ | − 2 : stochastic explosion a.s. (Dascaliuc, Pham, Thomann, Waymire 2019) 3D Bessel cascade h b ( ξ ) = C | ξ | − 1 e −| ξ | : no-explosion a.s. (Orum, Pham 2019) 10/21 Tuan Pham (Oregon State University) October 14, 2019 10 / 21

  23. Explosion Branching process may never stop, potentially making X FNS not well-defined. Property of cascade structure, not of product. Depending only on the majorizing kernel h and the clocks. 3D self-similar cascade h dilog ( ξ ) = C | ξ | − 2 : stochastic explosion a.s. (Dascaliuc, Pham, Thomann, Waymire 2019) 3D Bessel cascade h b ( ξ ) = C | ξ | − 1 e −| ξ | : no-explosion a.s. (Orum, Pham 2019) We bypass the explosion problem by defining instead χ ( ξ, t ) = E ξ, t [ X FNS ✶ S > t ] , where S is the shortest path. 10/21 Tuan Pham (Oregon State University) October 14, 2019 10 / 21

  24. Existence of expectation It may happen that E ξ, t [ | X FNS | ✶ S > t ] = ∞ . � X FNS ( ξ, t ) ✶ S > t = χ 0 ( W s ) ( finite product ) s ∈V 0 ( ξ, t ) 11/21 Tuan Pham (Oregon State University) October 14, 2019 11 / 21

  25. Existence of expectation It may happen that E ξ, t [ | X FNS | ✶ S > t ] = ∞ . � X FNS ( ξ, t ) ✶ S > t = χ 0 ( W s ) ( finite product ) s ∈V 0 ( ξ, t ) This issue depends on both cascade structure and the product. 11/21 Tuan Pham (Oregon State University) October 14, 2019 11 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend