ee 612 lecture 1 mosfet review
play

EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and - PowerPoint PPT Presentation

EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1 MOSFETs physical structure circuit schematic S G D G


  1. EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1

  2. MOSFETs physical structure circuit schematic S G D G S D 65 nm technology node: = 35 nm L T ox = 1.2nm V DD = 1.2V Lundstrom EE-612 F06 2

  3. common source characteristics D I D V G = V DD G S V GS 1) ground source V DS V DD 2) set V G 1 2 3) sweep V D from 0 to V DD 4) Step V G from 0 to V DD Lundstrom EE-612 F06 3

  4. common source characteristics on current ( μ A/ μ m) I D V G = V DD output conductance V GS V DD V DS channel resistance = V DS / I DS Lundstrom EE-612 F06 4

  5. transfer characteristics D high V D I D G S low V D 1) ground source V DD V GS 2) set V D 3) sweep V G from 0 to V DD Lundstrom EE-612 F06 5

  6. transfer characteristics high V D I D low V D V DD V GS intercept gives V T (sat) < V T (lin) intercept gives V T (lin) slope is related to the effective mobility Lundstrom EE-612 F06 6

  7. log 10 I D vs. V GS above D Log 10 I DS --> threshold G S V T V GS --> 1) ground source 2) set V D = V DD subthreshold 3) sweep V G from 0 to V DD region Lundstrom EE-612 F06 7

  8. log 10 I D vs. V GS on-current V GS = V DS = V DD Log 10 I DS --> off-current V GS = 0 V DS = V DD V GS V DD subthreshold swing S > 60 mV/decade Lundstrom EE-612 F06 8

  9. DIBL (drain-induced barrier lowering) Log 10 I DS --> V D = 1.0V V D = 0.05V V GS V DD DIBL mV/V V T (V D = 1.0V) < V T (V D = 0.05V) Lundstrom EE-612 F06 9

  10. GIDL (gate-induced drain leakage) Log 10 I DS --> V D = 1.0V V GS V DD GIDL Lundstrom EE-612 F06 10

  11. physics of MOSFETs E = − qV electron energy vs. position S G D V D ≈ 0V V D = V DD E.O. Johnson, RCA Review , 34 , 80, 1973 Lundstrom EE-612 F06 11

  12. modern MOSFETs 130 nm technology (L G = 60 nm) PMOS NMOS I DS (mA/ μ m) Intel Technical J., Vol. 6, May 16, 2002. (low V T device) Lundstrom EE-612 F06 12

  13. MOSFET IV: low V DS 0 V G V D I D V GS ( ) = − C ox V GS − V T − V ( x ) ( ) Q i x ( ) υ x ( x ) = W Q i 0 ( ) υ x (0) I D = W Q i x V DS ( ) μ eff E x I D = W C ox V GS − V T I D = W ( ) V DS L μ eff C ox V GS − V T E x = V DS L Lundstrom EE-612 F06 13

  14. MOSFET IV: high V DS 0 V G V D I D V GS ( ) = V GS − V T ( ) V x ( ) υ x ( x ) = W Q i 0 ( ) υ x (0) I D = W Q i x V DS ( ) μ eff E x I D = W C ox V GS − V T E x ≈ V GS − V T I D = W ( ) L μ eff C ox V GS − V T 2 2 L Lundstrom EE-612 F06 14

  15. velocity saturation L = 1.5V V DS 60nm ≈ 25 × 10 4 V/cm velocity cm/s ---> υ = υ sat 10 7 υ = μ E 10 4 electric field V/cm ---> Lundstrom EE-612 F06 15

  16. MOSFET IV: velocity saturation 0 V G V D E x >> 10 4 ( ) υ x ( x ) = W Q i 0 ( ) υ x (0) I D = W Q i x 0 0.4 0.8 1.2 1.4 ( ) υ sat I D = W C ox V GS − V T ( ) I D = W C ox υ sat V GS − V T Lundstrom EE-612 F06 16

  17. MOSFET IV: discussion ( ) ≈ ? Q i = − C ox V GS − V T V GS 1.2V Q i ≈ 2 × 10 − 6 C/cm 2 V T = 0.3V T ox = 1.5 nm Q i ≈ 1 × 10 13 /cm 2 q Lundstrom EE-612 F06 17

  18. MOSFET IV: discussion 130 nm technology (L G = 60 nm) I D ≈ W Q i (0) υ sat ≈ 1.6 mA/ μ m Intel Technical J., Vol. 6, May 16, 2002 . Lundstrom EE-612 F06 18

  19. MOSFET IV: velocity overshoot 3.0x10 7 V D = 0.8V V G -V T = 0.5V Velocity (cm/s) 2.0x10 7 1.0x10 7 V D = 0.8V V G -V T = 0.5V 0.0 0.0 0.01 0.02 0.03 0.04 0.05 0.0 0.01 0.02 0.03 0.04 0.05 Position along Channel ( μ m) Position along Channel (mm) Frank, Laux, and Fischetti, IEDM Tech. Dig., p. 553, 1992 Lundstrom EE-612 F06 19

  20. MOSFET IV: Quantum effects L = 10 nm increased off-current Log I D vs. V GS n(x, E) classical quantum (quantum confinement reduced treated in both cases) on-current nanoMOS at www.nanohub.org I D vs. V DS Lundstrom EE-612 F06 20

  21. Summary 1) A MOSFET’s I D = inversion layer charge times velocity 2) 2D electrostatics determine Q i 3) Carrier transport determines the velocity 4) Second order effects are becoming first order (e.g. leakage) Lundstrom EE-612 F06 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend