a 61 5db sndr pipelined adc
play

A 61.5dB SNDR Pipelined ADC Using Simple Highly-Scalable Ring - PowerPoint PPT Presentation

A 61.5dB SNDR Pipelined ADC Using Simple Highly-Scalable Ring Amplifiers Benjamin Hershberg 1 , Skyler Weaver 1 , Kazuki Sobue 2 , Seiji Takeuchi 2 , Koichi Hamashita 2 , Un-Ku Moon 1 1 Oregon State University, Corvallis, OR, USA 2 Asahi Kasei


  1. A 61.5dB SNDR Pipelined ADC Using Simple Highly-Scalable Ring Amplifiers Benjamin Hershberg 1 , Skyler Weaver 1 , Kazuki Sobue 2 , Seiji Takeuchi 2 , Koichi Hamashita 2 , Un-Ku Moon 1 1 Oregon State University, Corvallis, OR, USA 2 Asahi Kasei Microdevices, Atsugi, Japan

  2. An Incomplete Solution • Goal: develop truly scalable amplifiers – Conventional opamps are fundamentally ill-suited for nanoscale CMOS – Efficiency in amplification-based designs is actually getting worse • ADCs – Amplifier-less ADCs (i.e. SARs) provide excellent scalability for some of the design space – Scalable amplifiers are needed to cover the entire ADC design space • The more scalable options we have, the better 2

  3. Beating the Trend A scalable amplifier must • Operate well in nanoscale CMOS • Improve with nanoscale CMOS Circuit level requirements • Minimize SNR loss from low-voltage, degrading r o • Exploit digital scaling benefits • Avoid conventional RC-based settling 3

  4. Beating the Trend - V DZ V OUT V IN + Ring Amplifier (Ringamp, RAMP) 4

  5. Ring Amplification Basic Theory

  6. Ring Amplifier: Basic Theory RST Example MDAC V CMO Feedback Structure RST V IN AMP ±V REF RST C LOAD V CMX • Basic MDAC test structure 6

  7. Ring Amplifier: Basic Theory RST Example MDAC V CMO Feedback Structure RST RST V IN V OUT V IN ±V REF RST C LOAD V CMX =0.6V • Ring Oscillator • Unstable… …but will oscillate around the correct settled value 7

  8. Ring Oscillator Sample Waveform 1.2 1.2 1 1 V IN V CMX = 0.6V (ideal settled input value) 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 time (ns) time (ns) 8

  9. Ring Amplifier: Basic Theory RST Example MDAC V CMO Feedback Structure -V OS + RST RST RST - V IN V DZ ±V REF + RST RST C LOAD +V OS - V CMX • Split signal into two separate paths • Embed offset in each path 9

  10. Ring Amplifier Sample Waveform V DZ = 0mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 V AP V BP 0.2 0.2 - V IN V OUT 0 0 V DZ V A 0 1 2 3 4 5 6 0 1 2 3 4 5 6 + time (ns) time (ns) V BN V AN 10

  11. Ring Amplifier Sample Waveform V DZ = 0mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 V AP V BP 0.2 0.2 - V IN V OUT 0 0 V DZ V A 0 1 2 3 4 5 6 0 1 2 3 4 5 6 + time (ns) time (ns) V BN V AN 11

  12. Ring Amplifier Sample Waveform V DZ = 0mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 V AP V BP 0.2 0.2 - V IN V OUT 0 0 V DZ V A 0 1 2 3 4 5 6 0 1 2 3 4 5 6 + time (ns) time (ns) V BN V AN 12

  13. Ring Amplifier Sample Waveform V DZ = 0mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 V AP V BP 0.2 0.2 - V IN V OUT 0 0 V DZ V A 0 1 2 3 4 5 6 0 1 2 3 4 5 6 + time (ns) time (ns) V BN V AN 13

  14. Ring Amplifier Sample Waveform V DZ = 200mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 time (ns) time (ns) Plateaus form at dead-zone crossings 14

  15. Ring Amplifier Sample Waveform V DZ = 250mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 time (ns) time (ns) 15

  16. Ring Amplifier Sample Waveform V DZ = 300mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 time (ns) time (ns) 16

  17. Ring Amplifier Sample Waveform V DZ = 350mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 time (ns) time (ns) 17

  18. Ring Amplifier Sample Waveform V DZ = 400mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 time (ns) time (ns) 18

  19. Ring Amplifier Sample Waveform V DZ = 250mV 1.2 1.2 1 1 0.8 0.8 Volts Volts 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 time (ns) time (ns) Decreasing V OV reduces slew-rate 19

  20. V OV Dynamic Pinch-off A V2 *(V IN *A V1 + V OS ) A V2 +V OS - - V IN V OUT V DZ + A V1 -V OS + A V2 *(V IN *A V1 - V OS ) 20

  21. V OV Dynamic Pinch-off A V2 *(V IN *A V1 + V OS ) A V2 +V OS - - V IN V OUT V DZ + A V1 -V OS + – I D decreases • V OV → I D 2 A V2 *(V IN *A V1 - V OS ) – R o increases • Dominant pole → DC 21

  22. Dynamic Dead-zone Adjustment A V1 I P - V IN I P -I N V DZ + I N • Initial: A V1 limited by slewing • Final: A V1 set by AC small-signal • Dynamically adjusts input-referred dead-zone • Enhances Speed / Accuracy trade-off 22

  23. Core Benefits

  24. Ring Amplifier Core Benefits Slew-based charging • Charges with maximally biased, digitally-switched current sources – Can be very small, even for large C LOAD – Decouples internal speed vs. output load requirements 24

  25. Ring Amplifier Core Benefits Scalability (Speed/Power) • Internal speed/power (mostly) independent of C LOAD – Inverter t d , crowbar current, parasitic C’s – Digital power-delay product scaling benefits apply • Captures the same power/speed trends as digital circuits V DD I AVG D OUT D IN t d C GS PDP = V DD ·I AVG ·t d = E tot 25

  26. Ring Amplifier Core Benefits Scalability (Output Swing / SNR) • Compression immune: rail-to-rail output swing • 50dB: Input-referred dead-zone size will limit accuracy • 90dB: dynamic pinch-off effects maintain high accuracy – weak inversion – saturation even for small V DS – gain-boosting from increased r o 1 0.65 Small Swing Small Swing 0.9 Medium Swing Medium Swing Large Swing Large Swing 0.8 0.7 Volts Volts 0.6 0.6 0.5 0.4 0.3 26 0.2 0.55 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 time (ns) time (ns)

  27. Noise Suppression Max V OV 2 - 3 V DZ V OUT V IN 1 + • Output pinch-off reduces I D , g m – Internal noise sources attenuated • Initial charging noisy → final settling quiet 27

  28. Noise Suppression Pinch-off 2 - 3 V DZ V OUT V IN 1 + • Output pinch-off reduces I D , g m – Internal noise sources attenuated • Initial charging noisy → final settling quiet 28

  29. ADC Implementation Details

  30. Structure Overview 1.5b: 1b + 0.5b redundancy (MDAC gain of 2 per stage) V IN + 1.5b 1.5b 1.5b 1.5b 1.5b 1.5b 1.5b 1.5b 1.5b 1.5b V IN - C U = 200 fF C U = 200 fF C U = 200 fF C U = 200 fF C U = 200 fF C U = 200 fF C U = 200 fF C U = 200 fF C U = 200 fF FLASH Uses Same Ringamp for all Stages FLASH • 10.5b Pipelined ADC – 9 identical 1.5b MDAC stages – 1.5b Flash • Simple proof-of-concept built to characterize: – Basic functionality – Rail-to-rail output swing – Noise immunity 30

  31. Ring amplifier V RN 1X Φ S 2X 0.5X 1X 100fF Φ S V IN V OUT 1X 100fF 100fF 1X 0.5X 2X Φ S 1X V RP • Very small, very simple, uses minimum size inverters 31

  32. Float-sampled MDAC Ф S Ф A Ф A 200fF V IN + Ф S V OUT + RAMP Ф A 200fF Ф SE D·V REF Ф SE V CMX -D·V REF Ф SE Ф A 200fF V OUT - RAMP Ф S V IN - Ф A 200fF Ф A Ф S • Differential gain: 2X • Common-mode gain: 1X 32

  33. Measurement Results

  34. Input Spectrum • Limited by quantization noise • Inherent noise advantage demonstrated 34

  35. Rail-to-Rail Output Swing Test Rail-to-rail output swing test 60 V DD = 1.2V 55 V refp = 1.2V V refn = 0V 50 f s = 4MHz SNDR (dB) 45 40 35 30 25 20 -40 -35 -30 -25 -20 -15 -10 -5 0 Input Amplitude (dBFS) 35

  36. Ring Amp Dead-Zone Sensitivity Ring Amplifier dead-zone sensitivity 65 60 SNDR (dB) 55 nominal value (40mV) 50 45 -20 0 20 40 60 80 100 1st stage dead-zone (mV differential pk-pk) 36

  37. Performance Summary Technology 0.18µm 1P4M CMOS Resolution 10.5 bits Analog Supply 1.3 V Sampling rate 30 Msps ERBW 15 MHz Input Range 2.2 V pk-pk diff. SNDR 61.5 dB SNR 61.9 dB SFDR 74.2 dB ENOB 9.9 bits Total Power 2.6 mW FoM 90 fJ/c-step 37

  38. Room for improvement • Design meant to probe THD, SNR limits of minimum sized ringamp – Speed set intentionally low – No optimization, stage scaling – Ringamps left ‘on’ during sampling phase – FoM can easily be improved • ISSCC 2012 implementation** – Speed: 90Msps – Power save features: 50% reduction in power ** B. Hershberg, et al. “Ring Amplifiers for Switched Capacitor Circuits”, ISSCC 2012 38

  39. Scalability Test • Design Challenge: – MDAC for 11b pipelined ADC with 10b ENOB – 130nm, 90nm, 65nm, 45nm, 32nm V DD process defined SNDR > 66dB (input referred) Output Swing 0.8V DD Total Load 800fF Speed proportional to 1/L min Power Minimize – ASU predictive technology models [ptm.asu.edu] 39

  40. Scalability Test V RN RST RST RST V RP Test Ringamp 40

  41. Scalability Test Ф S Ф A Ф S 200fF V IN + RAMP 200fF Ф A Ф S 300fF Ф SE V CM V CMX Ф SE Ф S Ф A 300fF 200fF RAMP V IN - Ф S 200fF Ф A Ф S Pesudo-differential Test MDAC 41

  42. Scalability Test P TOT / f s (P TOT - P CV 2 f ) / f s 0 10 Efficiency (pJ / cycle) 130nm 1.2V 100MHz 90nm 1.2V 150MHz 65nm -1 10 1.2V 32nm 200MHz 1.0V 420MHz 45nm -2 10 1.05V 300MHz 100 150 200 250 300 350 400 Conversion Speed (MHz) 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend