time crystal platform
play

Time Crystal Platform Krzysztof Sacha Jagiellonian University in - PowerPoint PPT Presentation

Time Crystal Platform Krzysztof Sacha Jagiellonian University in Krak ow. People Krzysztof Giergiel Artur Miroszewski Topological time crystal part: A. Dauphin M. Lewenstein J. Zakrzewski Discrete time crystals Theoretical prediction:


  1. Time Crystal Platform Krzysztof Sacha Jagiellonian University in Krak´ ow.

  2. People Krzysztof Giergiel Artur Miroszewski Topological time crystal part: A. Dauphin M. Lewenstein J. Zakrzewski

  3. Discrete time crystals Theoretical prediction: K. Sacha, PRA 91 , 033617 (2015). | ψ � ∝ | N , 0 � + | 0 , N � | ψ � ∝ | N , 0 � V. Khemani et al. , PRL 116 , 250401 (2016). Peter Hannaford, D. V. Else et al. , PRL 117 , 090402 (2016). Swinburne Univ. of Technology, Melbourne First experiments: J. Zhang et al. , Nature 543 , 217 (2017). S. Choi et al. , Nature 543 , 221 (2017).

  4. Discrete time crystals Theoretical prediction: K. Sacha, PRA 91 , 033617 (2015). | ψ � ∝ | N , 0 � + | 0 , N � | ψ � ∝ | N , 0 � V. Khemani et al. , PRL 116 , 250401 (2016). Peter Hannaford, D. V. Else et al. , PRL 117 , 090402 (2016). Swinburne Univ. of Technology, Melbourne First experiments: J. Zhang et al. , Nature 543 , 217 (2017). S. Choi et al. , Nature 543 , 221 (2017). K. Giergiel, A. Kuro´ s, KS, ”Discrete Time Quasi-Crystals” , arXiv:1807.02105.

  5. Condensed matter physics in time crystals

  6. Platform for time crystal research Single particle systems Integrable 1D system: H 0 ( x , p ) − → H 0 ( I ) = ⇒ I = const , θ = Ω( I ) t + θ 0 . Time periodic perturbation: �� � �� � f k e ik ω t h n e in θ H 1 = f ( t ) h ( x ) − → H 1 = . n k

  7. Platform for time crystal research Single particle systems Integrable 1D system: H 0 ( x , p ) − → H 0 ( I ) = ⇒ I = const , θ = Ω( I ) t + θ 0 . Time periodic perturbation: �� � �� � f k e ik ω t h n e in θ H 1 = f ( t ) h ( x ) − → H 1 = . n k Assume s:1 resonance, ω = s Ω( I ). In the moving frame Θ = θ − ω s t P 2 � f − k h ks e iks Θ . H ≈ + 2 m eff k

  8. Platform for time crystal research Single particle systems Integrable 1D system: H 0 ( x , p ) − → H 0 ( I ) = ⇒ I = const , θ = Ω( I ) t + θ 0 . Time periodic perturbation: �� � �� � f k e ik ω t h n e in θ H 1 = f ( t ) h ( x ) − → H 1 = . n k Assume s:1 resonance, ω = s Ω( I ). In the moving frame Θ = θ − ω s t P 2 � f − k h ks e iks Θ . H ≈ + 2 m eff k P 2 For example for f ( t ) = λ cos( ω t ), we get H ≈ 2 m eff + V 0 cos( s Θ).

  9. Crystalline structure in time A particle bouncing on an oscillating mirror P 2 H ≈ 2 m eff + V 0 cos( s Θ) s : 1 resonance ( s = 4): probability density 0.1 1 t=0.25T t=0.3T 0.05 4 2 3 0 0 30 60 90 120 x mirror classical turning point

  10. Crystalline structure in time A particle bouncing on an oscillating mirror P 2 H ≈ 2 m eff + V 0 cos( s Θ) s : 1 resonance ( s = 4): probability density 0.1 1 t=0.25T t=0.3T 0.05 4 2 3 0 sT 0 30 60 90 120 s J � x � ( a ∗ E F = dt � ψ | H F | ψ � ≈ − j +1 a j + c . c . ) mirror 2 j =1 0 classical turning point x=121 probability density sT 0.6 J = − 2 � dt � φ j +1 | H F | φ j � 1 2 3 4 0 0.4 0.2 KS, Sci. Rep. 5 , 10787 (2015). 0 0 1 2 3 4 t / T

  11. λ Topological time crystals A particle bouncing on an oscillating mirror Mirror oscillations ∝ λ cos( s ω t ) + λ 1 cos( s ω t / 2) s / 2 i a i + J ′ a ∗ � J b ∗ � � SSH model: H ≈ − i +1 b i i =1

  12. Topological time crystals A particle bouncing on an oscillating mirror Mirror oscillations ∝ λ cos( s ω t ) + λ 1 cos( s ω t / 2) s / 2 i a i + J ′ a ∗ � J b ∗ � � SSH model: H ≈ − i +1 b i i =1 Mirror oscillations ∝ λ cos( s ω t ) + λ 1 cos( s ω t / 2) + f ( t ), f ( t ) creates the edge in time: J' / J 0.6 1. 1.7 2.8 4.7 7.9 6 4 Quasi - energy 2 0 - 2 - 4 - 6 - 0.013 0. 0.013 0.025 0.038 0.05 λ 1

  13. Topological time crystals A particle bouncing on an oscillating mirror Mirror oscillations ∝ λ cos( s ω t ) + λ 1 cos( s ω t / 2) s / 2 i a i + J ′ a ∗ � J b ∗ � � SSH model: H ≈ − i +1 b i i =1 Mirror oscillations ∝ λ cos( s ω t ) + λ 1 cos( s ω t / 2) + f ( t ), f ( t ) creates the edge in time: x ≈ 0 t = const. J' / J Probability density 0.6 1. 1.7 2.8 4.7 7.9 6 Edge state 0.1 4 Quasi - energy 2 0 0.05 - 2 - 4 Bulk state - 6 0 - 0.013 0 0.2 0.4 0.6 0.8 1 0. 0.013 0.025 0.038 0.05 t / T λ 1 K. Giergiel, A. Dauphin, M. Lewenstein, J. Zakrzewski, KS, arXiv:1806.10536

  14. π π θ Quasi-crystals in the time domain A particle bouncing on an oscillating mirror Fibonacci quasi-crystal (the inflation rule B → BS and S → B ): B → BS → BSB → BSBBS → BSBBSBSB → . . . P 2 � f − k h ks e iks Θ . H ≈ + 2 m eff k

  15. θ π Quasi-crystals in the time domain A particle bouncing on an oscillating mirror Fibonacci quasi-crystal (the inflation rule B → BS and S → B ): B → BS → BSB → BSBBS → BSBBSBSB → . . . P 2 � f − k h ks e iks Θ . H ≈ + 2 m eff k 0.6 B S B B S B S B B S B B S 0 0.4 c 0.2 f k - 50 V eff s 0.0 f k 100 0 - 0.2 - 100 - 100 - 0.4 5 10 15 20 25 30 0 2 π k K. Giergiel, A. Miroszewski, KS, PRL 120 , 140401 (2018).

  16. ω π π Exotic Interactions Ultra-cold atoms bouncing on an oscillating mirror Bosons: s s H F = − J a j + h . c . ) + 1 ˆ � a † � a † a † (ˆ j +1 ˆ U ij ˆ i ˆ j ˆ a j ˆ a i 2 2 j =1 i , j =1 � sT � dx | φ i | 2 | φ j | 2 , U ij ∝ dt g 0 0

  17. π Exotic Interactions Ultra-cold atoms bouncing on an oscillating mirror Bosons: s s H F = − J a j + h . c . ) + 1 ˆ � a † � a † a † (ˆ j +1 ˆ U ij ˆ i ˆ j ˆ a j ˆ a i 2 2 j =1 i , j =1 � sT � dx | φ i | 2 | φ j | 2 , U ij ∝ dt g 0 0 20:1 resonance 1.0 10 0.5 5 U ij g 0 0 0.0 J J - 5 - 0.5 - 10 - 1.0 - 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 2 π i - j ω t K. Giergiel, A. Miroszewski, KS, PRL 120 , 140401 (2018).

  18. Time crystals with properties of 2D space crystals

  19. Time crystals with properties of 2D space crystals 5:1 resonances along x and y directions a i + h . c . ) + 1 H F = − J ˆ � a † � a † a † (ˆ j ˆ U ij ˆ i ˆ j ˆ a j ˆ a i 2 2 � i , j � i , j K. Giergiel, A. Miroszewski, KS, PRL 120 , 140401 (2018).

  20. Time engineering Anderson molecule Two atoms bound together not due to attractive interaction but due to destructive interference H = p 2 1 + p 2 H eff = P 2 1 + P 2 2 2 � f − 2 k e ik (Θ 1 − Θ 2 ) + δ ( θ 1 − θ 2 ) f ( t ) − → + 2 2 k K. Giergiel, A. Miroszewski, KS, PRL 120 , 140401 (2018).

  21. Time engineering Anderson molecule Two atoms bound together not due to attractive interaction but due to destructive interference H = p 2 1 + p 2 H eff = P 2 1 + P 2 2 2 � f − 2 k e ik (Θ 1 − Θ 2 ) + δ ( θ 1 − θ 2 ) f ( t ) − → + 2 2 k K. Giergiel, A. Miroszewski, KS, PRL 120 , 140401 (2018).

  22. Summary: 1. Time crystals are analogues of space crystals but in the time domain. 2. Crystalline structures in time can emerge in dynamics of resonantly driven single- and many-particle systems. 3. Periodically driven systems are platform for time crystal research: • topological time crystals, • quasi-crystal structures in time, • many-body systems with exotic interactions, • time crystals with properties of 2D or 3D space crystals, • Anderson localization in the time domain induced by disorder in time, • many-body localization caused by temporal disorder, • dynamical quantum phase transition in time crystals. 4. Time engineering: Anderson molecule. KS, PRA 91 , 033617 (2015). K. Giergiel, A. Miroszewski, KS, PRL 120 , 140401 (2018). KS, Sci. Rep. 5 , 10787 (2015). A. Kosior, KS, PRA 97 , 053621 (2018). KS, D. Delande, PRA 94 , 023633 (2016). K. Giergiel, A. Kosior, P. Hannaford, KS, PRA 98 , 013613 (2018). K. Giergiel, KS, PRA 95, 063402 (2017). A. Kosior, A. Syrwid, KS, arXiv:1806.05597. M. Mierzejewski, K. Giergiel, KS, PRB 96 , 140201 (2017). K. Giergiel, A. Dauphin, M. Lewenstein, J. Zakrzewski, KS, D. Delande, L. Morales-Molina, KS, PRL 119 , 230404 (2017). arXiv:1806.10536. A. Syrwid, J. Zakrzewski, KS, PRL 119 , 250602 (2017). K. Giergiel, A. Kuro´ s, KS, arXiv:1807.02105. KS, J. Zakrzewski, Time crystals: a review , Rep. Prog. Phys. 81, 016401 (2018).

  23. Formation of space crystals [ˆ H , ˆ T ] = 0 ˆ H – solid state system Hamiltonian ˆ T – translation operator of all particles by the same vector 2 � 2 = | ψ | 2 � � � ˆ � e i α ψ � � T ψ = � � � t =const.

  24. Formation of time crystals? Eigenstates of a time-independent Hamiltonian H are also eigenstates of a time translation operator e − iHt � 2 = � 2 = | ψ | 2 � e − iHt ψ � e − iEt ψ � � � � � r is fixed F. Wilczek, PRL 109 , 160401 (2012). P. Bruno, PRL 111 , 070402 (2013). H. Watanabe and M. Oshikawa, Phys. Rev. Lett. 114 , 251603 (2015). A. Syrwid, J. Zakrzewski, KS, ”Time crystal behavior of excited eigenstates” , Phys. Rev. Lett. 119, 250602 (2017).

  25. Discrete time crystals Spontaneous process

  26. Discrete time crystals Single particle bouncing on an oscillating mirror in 1D Classically: ⇐ ⇒ Floquet Hamiltonian: ∂ 2 1 ∂ H F ( t ) = − ∂ z 2 + z + λ z cos(2 π t / T ) − i 2 ∂ t H F ψ n ( z , t ) = E n ψ n ( z , t ) E n – quasi-energy ψ n ( z , t ) – time periodic function

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend