4 electrons in a solid
play

4. Electrons in a solid 3. Crystal vibrations 4.2. Free-electron - PowerPoint PPT Presentation

4. Electrons in a solid 3. Crystal vibrations 4.2. Free-electron gas 3. Crystal vibrations 90 92 Effective one-electron potential 4.1. Bloch - Theorem 3. Crystal vibrations 4.2. Density of states 3. Crystal vibrations 91 93


  1. 4. Electrons in a solid 3. Crystal vibrations 4.2. Free-electron gas 3. Crystal vibrations 90 92 Effective one-electron potential 4.1. Bloch - Theorem 3. Crystal vibrations 4.2. Density of states 3. Crystal vibrations 91 93 Translational symmetry yields Bloch-wave: and therefore:

  2. 4.2. Dispersion relation - bandstructure 3. Crystal vibrations 4.4. Specific heat 4. Electrons in solids 94 96 D(E) E 4.3. Fermi distribution-function 4. Electrons in solids 4.4. Specific heat 4. Electrons in solids 95 97 f(E,T) 4 E/k (10 K) 15.4 2 k T B B 1.0 E kin e 0.8 E vac ν h T= 0.6 750 K E F f(E,T) 500 K 290 K 0.4 100 K 0.2 0.0 -0.2 0.0 0.2 0.4 E - E F (eV)

  3. 4.5. Electrostatic Screening 4. Electrons in solids 4.5. Thermionic emission 4. Electrons in solids 98 100 for slowly varying potential δ U: Poisson equation: Solution: Work function whereby Thomas-Fermi screening length: 4.5. Mott insulator 4. Electrons in solids 4.6. Nearly free electrons 4. Electrons in solids 99 101 E deloc E vac In a shallow potential the number energy of bound states decreases E loc r/rTF e /r 1/r r n.n. dist. conductivity increase of n ⇒ decrease of r TF ⇒ free electrons insulator metal Mott transition: insulator ⇒ metal n

  4. 4.6. Nearly free electrons 4. Electrons in solids 4.6. Nearly free electrons 4. Electrons in solids 102 104 Extended zone scheme Reduced zone scheme Repeated zone scheme K=2 π /a 4.6. Nearly free electrons 4. Electrons in solids 4.6. Solution at Brillouin zone-boundary 4. Electrons in solids 103 105 Standing waves:

  5. 4.6 Standing wave at Brillouin zone-boundary 4. Electrons in solids 4.7 s- and p z - waves 4. Electrons in solids 106 108 Energie Bandlücke: 2V |V| |V| G/2 0 k z OF s-Welle V(z) z p-Welle z=0 a 4.7 Tight binding bandstructure 4.8 Examples - metall 4. Electrons in solids 4. Electrons in solids 107 109 Aluminium-Bandstruktur mit 1 s-artigen, 3 p-artigen und 5 d-artigen Basisfunktionen (j = 1 . . . 9) nach: D. A. Papaconstantopoulos, Cu, fcc: 3s2 3p6 3d10 4s1, s(p) and d bands, metal Handbook of the band structure of elemental solids, Plenum Press (New York) 1986.

  6. 4. Electrons in solids 4.8 Examples - semiconductor 4. Electrons in solids 4.8 Occupied states – photoelectron spectroscopy 110 112 vertical transition Ge, 4s2 4p2, → sp3 hybridized, absolute band gap, semiconductor 4.8 Examples – Fermi surfaces 4.8 Unoccupied states 4. Electrons in solids 4. Electrons in solids 111 113 Fermi surfaces Inverse photoemission (IPES) Two-photon photoemission (2PPE) Al

  7. 4.8 Examples - metall 4. Electrons in solids 4.8 Examples – Fermi surfaces 4. Electrons in solids 109 111 Fermi surfaces Al Cu, fcc: 3s2 3p6 3d10 4s1, s(p) and d bands, metal 4. Electrons in solids 4.8 Examples - semiconductor 4.8 Occupied states – photoelectron spectroscopy 4. Electrons in solids 110 112 vertical transition Ge, 4s2 4p2, → sp3 hybridized, absolute band gap, semiconductor

  8. 4.8 Unoccupied states 4. Electrons in solids 113 Inverse photoemission (IPES) Two-photon photoemission (2PPE)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend