the project and lift algorithm for the computation of
play

The Project-And-Lift Algorithm for the Computation of Toric Gr - PowerPoint PPT Presentation

The Project-And-Lift Algorithm for the Computation of Toric Gr obner Bases An Implementation in Mathematica Stephan Ritscher Department of Computer Science TU M unchen 13th of April 2010 Stephan Ritscher: Computation of Toric Gr


  1. The Project-And-Lift Algorithm for the Computation of Toric Gr¨ obner Bases An Implementation in Mathematica Stephan Ritscher Department of Computer Science TU M¨ unchen 13th of April 2010 Stephan Ritscher: Computation of Toric Gr¨ obner Bases 1/ 29

  2. Outline 1 Motivation 2 Prerequisites 3 Problem Statement 4 Overview of Algorithms Common Parts Saturation Algorithm Shadow Algorithm Project-and-Lift Algorithm Geometric Buchberger Algorithm 5 Experimental Results 6 Conclusion Stephan Ritscher: Computation of Toric Gr¨ obner Bases 2/ 29

  3. Motivation Integer Linear Programming Standard Form min { cy : Ay = b , y ∈ N n } Selected Applications • Travelling Salesman • Knapsack, Bin Packing • Schedule Optimization • Frequency Planning for Mobile Phone Networks • Capacity Planning for Telecommunication Networks Stephan Ritscher: Computation of Toric Gr¨ obner Bases 3/ 29

  4. Motivation Applying Gr¨ obner-Bases Definition (Test Set) T is a test set for min { cy : Ay = b , y ∈ N n } if 1 all y ∈ T have negative cost ( cy < 0), 2 all y ∈ T solve Ay = 0 and 3 for each non-optimal solution y s ∈ N n of Ay s = b there is a y ∈ T s.t. y s + y ∈ N n . Stephan Ritscher: Computation of Toric Gr¨ obner Bases 4/ 29

  5. Motivation Applying Gr¨ obner-Bases Definition (Test Set) T is a test set for min { cy : Ay = b , y ∈ N n } if 1 all y ∈ T have negative cost ( cy < 0), 2 all y ∈ T solve Ay = 0 and 3 for each non-optimal solution y s ∈ N n of Ay s = b there is a y ∈ T s.t. y s + y ∈ N n . Optimization Algorithm 1 Find any solution y s ∈ N n of Ay s = b . 2 While ∃ y ∈ T : y s + y ∈ N n , let y s ← y s + y . 3 Return y s . Stephan Ritscher: Computation of Toric Gr¨ obner Bases 4/ 29

  6. Motivation Applying Gr¨ obner-Bases Definition (Test Set) T is a test set for min { cy : Ay = b , y ∈ N n } if 1 all y ∈ T have negative cost ( cy < 0), 2 all y ∈ T solve Ay = 0 and 3 for each non-optimal solution y s ∈ N n of Ay s = b there is a y ∈ T s.t. y s + y ∈ N n . Optimization Algorithm 1 Find any solution y s ∈ N n of Ay s = b . 2 While ∃ y ∈ T : y s + y ∈ N n , let y s ← y s + y . 3 Return y s . How can we find a finite (small) test set??? Stephan Ritscher: Computation of Toric Gr¨ obner Bases 4/ 29

  7. Prerequisites Polynomial Ideals Notation • K [ X ] = ring of polynomials over K in variables X = { x 1 , . . . , x n } • I ⊂ K [ X ] is an ideal iff for all a , b ∈ I , r ∈ K [ X ] 1 a + b ∈ I and 2 ar ∈ I . • � f 1 , . . . , f s � = ideal generated by f 1 , . . . , f s ∈ K [ X ] Stephan Ritscher: Computation of Toric Gr¨ obner Bases 5/ 29

  8. Prerequisites Polynomial Ideals Notation • K [ X ] = ring of polynomials over K in variables X = { x 1 , . . . , x n } • I ⊂ K [ X ] is an ideal iff for all a , b ∈ I , r ∈ K [ X ] 1 a + b ∈ I and 2 ar ∈ I . • � f 1 , . . . , f s � = ideal generated by f 1 , . . . , f s ∈ K [ X ] Example • Q [ x 1 , x 2 , x 3 ] ∋ x 2 1 − x 2 x 3 , x 1 x 2 2 x 3 − 1 , x 5 2 x 3 3 − 1 x 2 1 − x 2 x 3 , x 1 x 2 2 x 3 − 1 , x 5 2 x 3 ∋ x 1 − x 3 2 x 2 • � � 3 − 1 3 = x 2 2 x 3 ( x 2 1 − x 2 x 3 ) − x 1 ( x 1 x 2 2 x 3 − 1) Stephan Ritscher: Computation of Toric Gr¨ obner Bases 5/ 29

  9. Prerequisites Monomial Orderings Definition A total ordering ≺ of the monomials x α = x α 1 1 · · · x α n is admissible iff for n all α, β, γ ∈ N n (0 ∈ N ) 1 x α ≺ x β ⇒ x α x γ ≺ x β x γ and 2 1 ≺ x α for x α � = 1. LM ( f ) = largest monomial of f ∈ K [ X ] wrt. ≺ Stephan Ritscher: Computation of Toric Gr¨ obner Bases 6/ 29

  10. Prerequisites Monomial Orderings (2) Example • Lexicographic Ordering: x α ≺ x β iff first nonzero entry of α − β is negative. x 1 ≻ x 3 2 x 2 3 ≻ x 2 2 x 3 3 • Graded Reverse Lexicographic Ordering: x α ≺ x β iff deg( x α ) < deg( x β ) or deg( x α ) = deg( x β ) and last nonzero entry of α − β is positive. x 3 2 x 2 3 ≻ x 2 2 x 3 3 ≻ x 1 Stephan Ritscher: Computation of Toric Gr¨ obner Bases 7/ 29

  11. Prerequisites Monomial Orderings (3) Definition (Matrix Orderings) Given a matrix C ∈ K s , n , let x α ≺ x β iff the first nonzero entry of C α − C β is positive. Stephan Ritscher: Computation of Toric Gr¨ obner Bases 8/ 29

  12. Prerequisites Monomial Orderings (3) Definition (Matrix Orderings) Given a matrix C ∈ K s , n , let x α ≺ x β iff the first nonzero entry of C α − C β is positive. Notes Any admissible monomial ordering can be • represented by a matrix C ∈ R n , n . • approximated up to an arbitrary, fixed degree by a matrix C ∈ Z n , n . Common monomial orderings can be represented by a matrix C ∈ Z n , n Stephan Ritscher: Computation of Toric Gr¨ obner Bases 8/ 29

  13. Prerequisites Monomial Orderings (3) Definition (Matrix Orderings) Given a matrix C ∈ K s , n , let x α ≺ x β iff the first nonzero entry of C α − C β is positive. Notes Any admissible monomial ordering can be • represented by a matrix C ∈ R n , n . • approximated up to an arbitrary, fixed degree by a matrix C ∈ Z n , n . Common monomial orderings can be represented by a matrix C ∈ Z n , n Example ( n = 3)     1 0 0 Graded Reverse- 1 1 1 Lexicographic 0 1 0 lexicographic 0 0 − 1     Ordering: 0 0 1 Ordering: 0 − 1 0 Stephan Ritscher: Computation of Toric Gr¨ obner Bases 8/ 29

  14. Prerequisites Gr¨ obner Bases Definition G is a Gr¨ obner basis of I wrt. a monomial ordering ≺ iff 1 I = � G � and 2 � LM ( I ) � = � LM ( G ) � . Stephan Ritscher: Computation of Toric Gr¨ obner Bases 9/ 29

  15. Prerequisites Gr¨ obner Bases Definition G is a Gr¨ obner basis of I wrt. a monomial ordering ≺ iff 1 I = � G � and 2 � LM ( I ) � = � LM ( G ) � . Example x 2 1 − x 2 x 3 , x 1 x 2 2 x 3 − 1 , x 5 2 x 3 � � Consider I = 3 − 1 and the lexicographic monomial ordering. x 2 1 − x 2 x 3 , x 1 x 2 2 x 3 − 1 , x 5 2 x 3 � � • G 1 = 3 − 1 is no Gr¨ obner basis of I since x 1 ∈ � LM ( I ) � but x 1 / ∈ � LM ( G 1 ) � x 2 1 − x 2 x 3 , x 1 x 2 2 x 3 − 1 , x 5 2 x 3 3 − 1 , x 1 − x 3 2 x 2 � � • G 2 = is a Gr¨ obner basis 3 of I . Stephan Ritscher: Computation of Toric Gr¨ obner Bases 9/ 29

  16. Problem Statement Problem Statement Definition (Toric Ideals) Given a matrix A ∈ Z k , n , the associated toric ideal is defined as � x α − x β : α, β ∈ N n : α − β ∈ ker( A ) � I ( A ) = Stephan Ritscher: Computation of Toric Gr¨ obner Bases 10/ 29

  17. Problem Statement Problem Statement Definition (Toric Ideals) Given a matrix A ∈ Z k , n , the associated toric ideal is defined as � x α − x β : α, β ∈ N n : α − β ∈ ker( A ) � I ( A ) = Example � � A = 1 − 3 5 x 5 2 x 3 3 − 1 , x 1 − x 3 2 x 2 � � ⇒ I ( A ) = 3 Stephan Ritscher: Computation of Toric Gr¨ obner Bases 10/ 29

  18. Problem Statement Problem Statement Definition (Toric Ideals) Given a matrix A ∈ Z k , n , the associated toric ideal is defined as � x α − x β : α, β ∈ N n : α − β ∈ ker( A ) � I ( A ) = Example � � A = 1 − 3 5 x 5 2 x 3 3 − 1 , x 1 − x 3 2 x 2 � � ⇒ I ( A ) = 3 Task Given • matrix A ∈ Z k , n and • monomial ordering ≺ (as matrix) compute a Gr¨ obner basis of I ( A ) wrt. ≺ . Stephan Ritscher: Computation of Toric Gr¨ obner Bases 10/ 29

  19. Overview of Algorithms Common Parts ”Blue Print” of an Toric Ideal Algorithm Input : Matrix A, monomial ordering ≺ defined by matrix C Output : Gr¨ obner basis of I ( A ) Calculate lattice basis B of ker Z ( A ) Compute Markov basis M of ker Z ( A ) resp. ideal basis F of I ( A ) Compute Gr¨ obner basis of I ( A ) Stephan Ritscher: Computation of Toric Gr¨ obner Bases 11/ 29

  20. Overview of Algorithms Common Parts Lattice Basis Definition A lattice L is a set of the form L = Z v 1 + Z v 2 + . . . + Z v s ⊂ Z n . The set { v 1 , . . . , v s } is a lattice basis of L . Stephan Ritscher: Computation of Toric Gr¨ obner Bases 12/ 29

  21. Overview of Algorithms Common Parts Lattice Basis Definition A lattice L is a set of the form L = Z v 1 + Z v 2 + . . . + Z v s ⊂ Z n . The set { v 1 , . . . , v s } is a lattice basis of L . Example � � A = 1 − 3 5 � T + Z � T � � ⇒ ker Z ( A ) = Z 2 − 1 − 1 1 2 1 Stephan Ritscher: Computation of Toric Gr¨ obner Bases 12/ 29

  22. Overview of Algorithms Common Parts Lattice Basis Definition A lattice L is a set of the form L = Z v 1 + Z v 2 + . . . + Z v s ⊂ Z n . The set { v 1 , . . . , v s } is a lattice basis of L . Example � � A = 1 − 3 5 � T + Z � T � � ⇒ ker Z ( A ) = Z 2 − 1 − 1 1 2 1 Computation • Since A ∈ Z k , n , L = ker Z ( A ) is a lattice. 1. Triangulate A with unimodular operations (Hermite decomposition). 2. Lattice basis B of L = ker Z ( A ) can be read off the triangular form. Stephan Ritscher: Computation of Toric Gr¨ obner Bases 12/ 29

  23. Overview of Algorithms Common Parts Markov Basis Let α + be defined by α + i = max { α i , 0 } and α − = ( − α ) + . Definition Given a lattice L = ker Z ( A ), B is a Markov basis of L iff J ( B ) = { x α + − x α − : α ∈ B } is an ideal basis of I ( A ). Stephan Ritscher: Computation of Toric Gr¨ obner Bases 13/ 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend