the mos transistor
play

The MOS Transistor Johan Lfgren The Devices Important Dimensions - PowerPoint PPT Presentation

Digital IC Design Digital IC Design Exercises The MOS Transistor Johan Lfgren The Devices Important Dimensions Technology development: Gate NMOS PMOS Drain Source Source Drain Drain Source S Gate 1993: 0.6 um Gate W


  1. Digital IC Design Digital IC Design – Exercises The MOS Transistor Johan Löfgren The Devices Important Dimensions Technology development: Gate NMOS PMOS Drain Source Source Drain Drain Source S Gate 1993: 0.6 um Gate W Source Drain 2003: 65 nm With With t ox 2013: 18 nm? Bulk Bulk V DD GND NMOS PMOS L L G G S S D D D D S S p + n + n + p + p + n + n - p - The technology is “Diode area” named after the gate length L 3 4 1

  2. I D as a function of V DS MOS Model for Long Channels Resistive operation Widely used model for manual calculations Linear V GS =5V Slope due to Region g channel length ´ k W ≥ = 2 + λ - ; ( - ) (1 ) n modulation V V V I V V V V DS = V GS -V T DS GS T D 2 GS T DS L 2 W V V GS =4V < = + λ - ; ´ (( - ) - )(1 ) DS V V V I k V V V V DS GS T D n GS T DS 2 DS I D L Saturation V GS =3V V GS 3V = μ ´ k C Often added to n n ox avoid discontinuity = + γ φ + φ ( -2 - -2 ) V V V 0 T T F F SB 1 2 3 4 5 V DS [V] 5 6 υ ( ) Problem 1 Velocity Saturation sat ξ ( ) V DS forms a horizontal E-field An increased E-field leads to higher electron velocity Given the data in the table for an NMOS transistor with k ´ =20 μ A/V 2 , ξ ξ ( ( ) ) calculate V T0 , λ , and W/L. l l t V λ d W/L However at a critical E-field , the velocity saturates due However at a critical E field the velocity saturates due c to collisions with other atoms V GS (V) V DS (V) V SB (V) I D ( μ A) 5 m υ ≈ 10 for both electrons and holes 1 3 5 0 1210 sat s 2 5 5 0 4410 3 5 10 0 5292 Source Source Drain Drain n + n + V DS establish a horizontal E-field p - 7 8 2

  3. I D versus V DS Model for Manual Analysis I D (mA) 0.5 V GS -V T = 2.5 - 0.43 = 2.07 V A first order model for the velocity y Long-channel Long channel 0.4 saturated region: device V GS = V DD = 2.5 2 W V 0.3 = μ − − (( ) ) DSAT I C V V V Short-channel For both DSAT n ox GS T DSAT 2 L 0.2 device V DSAT = 0.63 V 0.1 V DS (V) 0 0 0.5 1.0 1.5 2.0 2.5 9 10 I D versus V DS Conclusions - Static Behavior Long channel Linear I D (V GS ) device Quadratic I D (V GS ) V DS = V GS - V T 2 W V Linear Region = − − ´ (( ) ) DS I k V V V D n GS T DS V DS < V GS -V T 2 2 L L DS GS T 0 6 0.6 0 25 0.25 V GS = 2.5 I D (mA) I D (mA) 0.5 V GS = 2.5 0.2 V GS = 2.0 ´ 0.4 k W Saturated Region V GS = 2.0 0.15 = − 2 + λ ( ) (1 ) n I V V V 0.3 D 2 GS T DS V DS > V GS -V T V GS = 1.5 L 0.1 V GS = 1.5 0.2 V GS = 1.0 0 05 0.05 GS 0.1 V GS = 1.0 = + γ − φ + − − φ ( 2 2 ) V V V 0 Threshold Voltage 0 0 T T F SB F 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 V DS (V) V DS (V) Long Channel Short Channel 11 12 3

  4. Three Regions Conclusions - Static Behavior Short channel device V DSAT 2 W V = ' − − + λ (( ) )(1 ) Resistive DS I k V V V V = 2 V D n GS T DS DS V 2 2 0.15 0 15 (mA) (mA) L L I I GS GS D Velocity ' k W Linear = − + λ ( ) (1 2 ) Saturated 0.1 n saturated = I V V V 1.5 V V D 2 GS T DS L GS V DSAT = V GS -V T 1.06V 0.5 2 0.63= V GS -0.43 W V = − − + λ ' = (( ) )(1 ) Ve locity saturated 1 V DSAT I k V V V V V GS D n GS T DSAT 2 DS L V GS -V T (V) V Saturated DS 0 0 1 2 13 14 Problem 3a A Unified Model for Manual Analysis 250 2 W V 200 = − − + λ ' (( ) min )(1 ) I k V V V V min D n GS T DS 2 150 L Id [uA] 100 50 = = − min( min( , , ) ) V V V V V V V V V V min 0 0 GS T DS DSAT 0 0,5 1 1,5 2 2,5 3 Vds [V] Vgs = 1 Vgs = 1,75 Vgs = 2,5 Saturation Voltage 15 16 4

  5. A PMOS Transistor Transistor Model for Manual Analysis Velocity saturation is less pronounced for PMOS due to lower mobility I ( A) I D (mA) 0 V GS = -1.0V -0.02 Assume all V GS = -1.5V variables -0.04 negative! negative! V V GS = -2.0V = -2 0V -0.06 -0.08 V GS = -2.5V -0.1 -2.5 -2 -1.5 -1 -0.5 0 V DS (V) 17 18 MOS Dynamic Behavior MOS Capacitances Source Gate Drain Equivalent switching resistance C GS C GD t ox V GS ≥ V T V V n + n + I D I D V GS = V DD V GS = V DD C G R C SB C DB on S D Bulk Cap. R mid R mid R 0 R 0 Junction Cap. V DS V DS V DD /2 V DD /2 V DD V DD Overlap Cap. X d 19 20 5

  6. Junction Capacitance Channel Capacitance (Table 3-4) To Bulk To Source To Drain Total Gate Cap. Drain/ Source Diffusion C GCB C GCS C GCD C G C Diff = C Bot + C SW C Diff C Bot C SW Bottom Bottom 0 0 Cutoff C OX W L C OX W L + 2 C 0 W 0 Resistive (1/2) C OX W L (1/2) C OX W L C OX W L + 2 C 0 W e t 0 0 Don’t count the wall Saturation (2/3) C OX W L (2/3) C OX W L + 2 C 0 W a G towards the channel s d Cut off: No channel ⇒ C GC = C GCB r a w l e o n T T n n a a h C Resistive: Channel ⇒ Divide C GC in two parts W Side Saturation: ≈ 2/ 3 of Channel to source Wall L s 21 22 Problem 8 BL1 BL2 GND 0.2x0.2 um Ts Cell Border RWL Tr Node Y Contact X Tw WWL Calculate the capacitance in node Y if it consists of the gate capacitance in Ts and the drain capacitance in Tw. C ox = 5 fF/um 2 , C j0 = 1.5 fF/um 2 , and C jsw0 = 0.25 fF/m 23 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend