multilevel integration for fermions ii
play

MULTILEVEL INTEGRATION FOR FERMIONS II Marco C, Leonardo Giusti, - PowerPoint PPT Presentation

D OMAIN DECOMPOSITION AND MULTILEVEL INTEGRATION FOR FERMIONS II Marco C, Leonardo Giusti, Stefan Schaefer Scuola Normale Superiore, Pisa & INFN, Sezione di Pisa Lattice 2016, July 27th, 2016 Case I: disconnected correlation functions


  1. D OMAIN DECOMPOSITION AND MULTILEVEL INTEGRATION FOR FERMIONS II Marco Cè, Leonardo Giusti, Stefan Schaefer Scuola Normale Superiore, Pisa & INFN, Sezione di Pisa Lattice 2016, July 27th, 2016

  2. Case I: disconnected correlation functions � � � � [ tr γ 5 D − 1 ( x , x )][ tr γ 5 D − 1 ( y , y )] x y = Factorization: use quark propagator factorization, case I (sink close to source) see talk by Schaefer ⇒ disconnected two point function splits in four contributions � � [ tr γ 5 D − 1 ( x , x )][ tr γ 5 D − 1 ( y , y )] � � � [ tr γ 5 D − 1 Γ ( x , x )][ tr γ 5 D − 1 � y = Γ ∗ ( y , y )] = x � � x [ tr γ 5 D − 1 Γ ( x , x )][ tr γ 5 δ D − 1 � � + Γ ∗ ( y , y )] + y � � x [ tr γ 5 δ D − 1 Γ ( x , x )][ tr γ 5 D − 1 + � Γ ∗ ( y , y )] � + y � � [ tr γ 5 δ D − 1 Γ ( x , x )][ tr γ 5 δ D − 1 x � � + Γ ∗ ( y , y )] + y 1 / 19

  3. Numerical test Wilson plaquette action β = 6 ⇒ a ≈ 0 . 093 fm Wilson fermions κ = 0 . 1560 ⇒ m π ≈ 450 MeV 64 × 24 3 lattice with open boundary conditions in time Two-level Monte Carlo: n 0 = 200 level- 0 configurations domain decomposition in two thick time slices n 1 = 100 level- 1 configurations Estimation of tr γ 5 D − 1 : Stochastic volume sources Hopping parameter expansion to reduce UV noise Note: to be computed only 2 / 19

  4. Contributions to propagator: factorized � [ tr γ 5 D − 1 Γ ( x , x )][ tr γ 5 D − 1 Γ ∗ ( y , y )] � + � [ tr γ 5 D − 1 Γ ( x , x )][ tr γ 5 δ D − 1 Γ ∗ ( y , y )] � + � [ tr γ 5 δ D − 1 Γ ( x , x )][ tr γ 5 D − 1 Γ ∗ ( y , y )] � + � [ tr γ 5 δ D − 1 Γ ( x , x )][ tr γ 5 δ D − 1 Γ ∗ ( y , y )] � Factorized contribution ⇒ independent averaging over level- 1 configs 10 − 2 10 − 2 C mlv δ ( f ) P d Pd n 1 = 1 � C ( f ) � � � � 10 − 3 10 − 3 P d � n 1 = 10 n 1 = 100 10 − 4 10 − 4 10 − 5 10 − 5 10 − 6 10 − 6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 | y 0 − x 0 | | y 0 − x 0 | first term carries almost no signal, only noise tr γ 5 D − 1 � � Note that Γ ( x , x )] = 0 Multilevel works at full potentiality to reduce the variance 3 / 19

  5. Contributions to propagator: correction � [ tr γ 5 D − 1 Γ ( x , x )][ tr γ 5 D − 1 Γ ∗ ( y , y )] � + � [ tr γ 5 D − 1 Γ ( x , x )][ tr γ 5 δ D − 1 Γ ∗ ( y , y )] � + � [ tr γ 5 δ D − 1 Γ ( x , x )][ tr γ 5 D − 1 Γ ∗ ( y , y )] � + � [ tr γ 5 δ D − 1 Γ ( x , x )][ tr γ 5 δ D − 1 Γ ∗ ( y , y )] � | − | | − | 10 − 2 10 − 2 C mlv δ ( r 1) P d Pd C ( r 1 ) n 1 = 1 10 − 3 P d 10 − 3 n 1 = 10 n 1 = 100 10 − 4 10 − 4 10 − 5 10 − 5 10 − 6 10 − 6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 | y 0 − x 0 | | y 0 − x 0 | 10 − 2 10 − 2 C mlv δ ( r 2) P d Pd C ( r 2 ) n 1 = 1 10 − 3 P d 10 − 3 n 1 = 10 n 1 = 100 10 − 4 10 − 4 10 − 5 10 − 5 10 − 6 10 − 6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 | y 0 − x 0 | | y 0 − x 0 | 4 / 19

  6. Summary: disconnected 10 − 2 10 − 2 C P d δ P d C mlv δ mlv P d P d 10 − 3 10 − 3 10 − 4 10 − 4 10 − 5 10 − 5 10 − 6 10 − 6 0 10 20 30 40 50 60 0 10 20 30 40 50 60 | y 0 − x 0 | | y 0 − x 0 | short-distance: error dominated by the first correction long-distance: error dominated by the factorized contribution ⇒ Factorization and multilevel integration works error decreases exponentially maintain signal for additional 1 fm 5 / 19

  7. Case II: connected correlation functions meson propagator baryon propagator � � � � Factorization less obvious. Two steps: factorization of the quark propagator, case II (sink far from source) 1 see talk by Schaefer y ≈ − x y + O e M π ∆ � x � D − 1 ( x , y ) − D − 1 Γ ( y , · ) D ∂ Γ ∗ D − 1 Γ ( · , x ) ¯ factorization of the hadron two-point function 2 With the factorized propagator: multilevel integration 3 6 / 19

  8. Numerical test Wilson plaquette action β = 6 ⇒ a ≈ 0 . 093 fm Wilson fermions κ = 0 . 1560 ⇒ m π ≈ 450 MeV 64 × 24 3 lattice with open boundary conditions in time Test of quark propagator factorization: stochastic sources on time slice x 0 = 4 a first cut at x 0 = 24 a ∆ = 8 a , 12 a and 16 a ⇒ second cut at 24 a − ∆ Contraction of two or three quark lines: pseudoscalar propagator nucleon propagator x =24 x =24 0 0 Δ Δ 7 / 19

  9. Meson Pseudoscalar two-point function x =24 0 10 − 2 Δ 10 − 3 10 − 4 10 − 5 C P c 10 − 6 C (0) P c 10 − 7 C (1) P c − C (0) P c 10 − 8 C (2) P c − C (1) P c 10 − 9 C ( rest ) P c 10 − 10 0 10 20 30 40 50 60 y 0 � � � � C P c = C ( 0 ) C ( 1 ) P c − C ( 0 ) C ( 2 ) P c − C ( 1 ) + C ( rest ) P c + + P c P c P c C ( 0 ) : ∆ = 8 a C ( 1 ) : ∆ = 12 a C ( 2 ) : ∆ = 16 a 8 / 19

  10. Baryon Nucleon two-point function x =24 10 − 6 0 Δ C N 10 − 7 C (0) 10 − 8 N C (1) − C (0) 10 − 9 N N 10 − 10 C (2) − C (1) N N 10 − 11 C ( rest ) N 10 − 12 10 − 13 10 − 14 10 − 15 10 − 16 0 10 20 30 40 50 60 y 0 � � � � C N = C ( 0 ) C ( 1 ) N − C ( 0 ) C ( 2 ) N − C ( 1 ) + C ( rest ) N + + N N N C ( 0 ) : ∆ = 8 a C ( 1 ) : ∆ = 12 a C ( 2 ) : ∆ = 16 a 9 / 19

  11. Factorized propagator Factorization of propagator in principle works small ∆ already gives excellent approximation can be improved by hierarchy of ∆ i ⇒ potential for multi-level Problem: Natural building blocks have two or three propagator on surface ( 6 V 3 ) 2 or ( 6 V 3 ) 3 complex numbers ⇒ too much to be saved to disk 10 / 19

  12. Projection of the propagator y x Cut the fermion line with P : S ( y , x ) = − D − 1 Γ D ∂ Γ ∗ · P · D − 1 Γ ( x , y ) ¯ P projects on lower dimensional space N � ψ i ψ † P = i i = 1 Reduce memory of building block ( 6 V 3 ) 2 → N 2 Several possibilities: stochastic sources ⇒ does not seem to work, large N required local deflation subspace eigenmodes of block Dirac operator 11 / 19

  13. Projections: deflation subspace Pseudoscalar two-point function with P : deflation subspace at x 0 / a = 24 10 − 2 10 − 2 10 − 3 10 − 3 10 − 4 10 − 4 10 − 5 10 − 5 C P c C P c 10 − 6 10 − 6 C (0) C (0) ˜ P c P c 10 − 7 C (1) C (0) 10 − 7 C (1) P c − C (0) ˜ P c − ˜ P c P c 10 − 8 C (2) C (1) 10 − 8 C (2) P c − C (1) ˜ P c − ˜ P c P c 10 − 9 C ( rest ) 10 − 9 C ( rest ) ˜ P c P c 10 − 10 10 − 10 0 10 20 30 40 50 60 0 10 20 30 40 50 60 y 0 y 0 Deflation subspace: Factorization only N s = 60 block modes, 4 4 blocks ∆ / a = 8 , 12 , 16 Lüscher ‘07 ⇒ Virtually no difference visible 12 / 19

  14. Projections: block eigenvectors subspace Pseudoscalar two-point function with P : eigenvectors of Dirac operator restricted to x 0 ∈ [ 24 − ∆ , 24 + ∆] 10 − 2 10 − 2 10 − 3 10 − 3 10 − 4 10 − 4 10 − 5 10 − 5 C P c C P c 10 − 6 C (0) ˜ 10 − 6 C (0) P c P c 10 − 7 C (1) ˜ P c − ˜ C (0) 10 − 7 C (1) P c − C (0) P c P c 10 − 8 C (2) ˜ P c − ˜ C (1) 10 − 8 C (2) P c − C (1) P c P c 10 − 9 C ( rest ) ˜ 10 − 9 C ( rest ) P c P c 10 − 10 10 − 10 0 10 20 30 40 50 60 0 10 20 30 40 50 60 y 0 y 0 Block eigenvectors subspace: Factorization only N ev = 120 vectors ∆ / a = 8 , 12 , 16 ⇒ Virtually no difference visible 13 / 19

  15. Projections: deflation subspace Nucleon two-point function with P : deflation subspace at x 0 / a = 24 10 − 6 10 − 6 C N C N 10 − 7 10 − 7 C (0) C (0) ˜ 10 − 8 10 − 8 N N C (1) − C (0) C (1) C (0) 10 − 9 ˜ − ˜ 10 − 9 N N N N 10 − 10 C (2) − C (1) 10 − 10 C (2) C (1) ˜ − ˜ N N N N 10 − 11 10 − 11 C ( rest ) C ( rest ) ˜ N N 10 − 12 10 − 12 10 − 13 10 − 13 10 − 14 10 − 14 10 − 15 10 − 15 10 − 16 10 − 16 0 10 20 30 40 50 60 0 10 20 30 40 50 60 y 0 y 0 Deflation subspace: Factorization only N s = 60 block modes, 4 4 blocks ∆ / a = 8 , 12 , 16 Lüscher ‘07 14 / 19

  16. Projections: block eigenvectors subspace Nucleon two-point function with P : eigenvectors of Dirac operator restricted to x 0 ∈ [ 24 − ∆ , 24 + ∆] 10 − 6 10 − 6 C N 10 − 7 C N 10 − 7 C (0) C (0) ˜ 10 − 8 10 − 8 N N C (1) − C (0) 10 − 9 C (1) ˜ − ˜ C (0) 10 − 9 N N N N 10 − 10 C (2) − C (1) 10 − 10 C (2) C (1) ˜ − ˜ N N N N 10 − 11 10 − 11 C ( rest ) C ( rest ) ˜ N N 10 − 12 10 − 12 10 − 13 10 − 13 10 − 14 10 − 14 10 − 15 10 − 15 10 − 16 10 − 16 0 10 20 30 40 50 60 0 10 20 30 40 50 60 y 0 y 0 Block eigenvectors subspace: Factorization only N ev = 120 vectors ∆ / a = 8 , 12 , 16 ⇒ Surprise: also the nucleon can be saturated by low-modes 15 / 19

  17. Summary of factorization Factorization of pion and nucleon two-point functions in principle possible. Two approximations involved: approximate factorization of propagator projection to low-mode subspace Surprise: the nucleon propagator is saturated by low modes! ⇒ Multilevel in quenched is possible 16 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend