quark hybrid stars how can we identify them
play

Quark hybrid Stars: how can we identify them? Prof. Mark Alford - PowerPoint PPT Presentation

Quark hybrid Stars: how can we identify them? Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arXiv:1302.4732 Alford, Schwenzer, arXiv:1310.3524 Schematic QCD phase diagram T heavy ion collider QGP nonCFL


  1. Quark hybrid Stars: how can we identify them? Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arXiv:1302.4732 Alford, Schwenzer, arXiv:1310.3524

  2. Schematic QCD phase diagram T heavy ion collider QGP non−CFL hadronic = color− superconducting CFL gas liq quark matter nuclear µ compact star superfluid /supercond M. Alford, K. Rajagopal, T. Sch¨ afer, A. Schmitt, arXiv:0709.4635 (RMP review) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

  3. Signatures of quark matter in compact stars ← Microphysical properties Observable (and neutron star structure) ← Phases of dense matter Property Nuclear phase Quark phase known unknown; mass, radius eqn of state ε ( p ) up to ∼ n sat many models

  4. Signatures of quark matter in compact stars ← Microphysical properties Observable (and neutron star structure) ← Phases of dense matter Property Nuclear phase Quark phase known unknown; mass, radius eqn of state ε ( p ) up to ∼ n sat many models bulk viscosity Depends on Depends on spindown shear viscosity phase: phase: (spin freq, age) n p e unpaired n p e , µ CFL heat capacity cooling CFL- K 0 neutrino emissivity n p e , Λ, Σ − (temp, age) n superfluid 2SC thermal cond. p supercond CSL shear modulus glitches π condensate LOFF vortex pinning (superfluid, K condensate 1SC energy crystal) . . .

  5. Nucl/Quark EoS ε ( p ) ⇒ Neutron star M ( R ) GR MS0 2.5 MPA1 < AP3 P � PAL1 ENG y t i l a AP4 MS2 s u Recent a c 2.0 J1614-2230 measurement: SQM3 MS1 FSU J1903+0327 Mass (solar) SQM1 GM3 PAL6 1.5 M = 1 . 97 ± 0 . 04 M ⊙ J1909-3744 GS1 Double NS Systems Demorest et al, 1.0 Nature 467, 1081 (2010). rotation 0.5 Nucleons Nucleons+ExoticStrange Quark Matter 0.0 7 8 9 10 11 12 13 14 15 Radius (km) Can neutron stars contain quark matter cores?

  6. Constraining QM EoS by observing M ( R ) Does a 2 M ⊙ star rule out quark matter cores (hybrid stars)? Lots of literature on this question, with various models of quark matter ◮ MIT Bag Model; (Alford, Braby, Paris, Reddy, nucl-th/0411016 ) ◮ NJL models; (Paoli, Menezes, arXiv:1009.2906 ) ◮ PNJL models (Blaschke et. al, arXiv:1302.6275 ; Orsaria et. al.; arXiv:1212.4213 ) ◮ hadron-quark NL σ model (Negreiros et. al., arXiv:1006.0380 ) ◮ 2-loop perturbation theory (Kurkela et. al., arXiv:1006.4062 ) ◮ MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060 ) We need a model-independent parameterization of the quark matter EoS: ◮ framework for relating different models to each other ◮ observational constraints can be expressed in universal terms

  7. CSS: a fairly generic QM EoS Model-independent parameterization with Constant Speed of Sound (CSS) ε ( p ) = ε trans + ∆ ε + c − 2 QM ( p − p trans ) Quark Matter Energy Density QM EoS params: -2 c QM ε 0,QM Slope = Δε p trans /ε trans ε trans ∆ ε/ε trans c 2 Nuclear QM Matter p trans Pressure Zdunik, Haensel, arXiv:1211.1231 ; Alford, Han, Prakash, arXiv:1302.4732

  8. Hybrid star M ( R ) Hybrid star branch in M ( R ) relation has 4 typical forms “Connected” “Both” M M ∆ ε < ∆ ε crit small energy density jump at phase transition R R “Absent” “Disconnected” M M ∆ ε > ∆ ε crit large energy density jump at phase transition R R

  9. “Phase diagram” of hybrid star M ( R ) Soft NM + CSS( c 2 QM =1) Schematic n trans /n 0 2.0 3.0 4.0 5.0 n causal 6.0 1.2 A 1 D Δε/ε trans = λ-1 ∆ε ε trans 0.8 B 0.6 C 0.4 0.2 0 trans ε p 0 0.1 0.2 0.3 0.4 0.5 trans p trans /ε trans ∆ ε crit = 1 2 + 3 p trans Above the red line (∆ ε > ∆ ε crit ), ε trans 2 ε trans connected branch disappears (Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/9802072 ) Disconnected branch exists in regions D and B.

  10. Sensitivity to NM EoS and c 2 QM c 2 c 2 QM =1 / 3 QM =1 1.2 1.2 A A 1 NL3 1 NL3 D D HLPS 0.8 0.8 Δε/ε trans Δε/ε trans B HLPS B 0.6 0.6 C C 0.4 0.4 0.2 0.2 0 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 p trans /ε trans p trans /ε trans • NM EoS (HLPS=soft, NL3=hard) does not make much difference. • Higher c 2 QM favors disconnected branch.

  11. n trans /n 0 2.0 3.0 4.0 5.0 n causal 6.0 1.2 A 1 D -4 B 0.8 Δ M = 10 M ๏ Δε/ε trans 0.6 -3 10 M ๏ C 0.4 -2 10 M ๏ 0.7 0.2 0.5 0.1M ๏ 0.3 0 0 0.1 0.2 0.3 0.4 0.5 p trans /ε trans Observability of hybrid star branches Measure length of hybrid branch by � mass of heaviest � ∆ M ≡ − M trans hybrid star M ∆ M M trans R

  12. Observability of hybrid star branches Soft NM + CSS( c 2 QM =1) Measure length of hybrid branch by n trans /n 0 2.0 3.0 4.0 5.0 n causal 6.0 � mass of heaviest � ∆ M ≡ − M trans 1.2 A hybrid star 1 D -4 M B 0.8 Δ M = 10 M ๏ Δε/ε trans ∆ M 0.6 -3 10 M ๏ C M trans 0.4 -2 10 M ๏ 0.7 0.2 0.5 0.1M ๏ 0.3 R 0 0 0.1 0.2 0.3 0.4 0.5 p trans /ε trans • Connected branch is observable if p trans is not too high and there is no disconnected branch • Disconnected branch is always observable

  13. Constraints on QM EoS from max mass Soft Nuclear Matter + CSS( c 2 QM = 1) 1.2 A D 1 2.0M ๏ 0.8 Δε/ε trans B 2.1M ๏ C 0.6 0.4 2 . 2 M ๏ 0.2 2 . 3 M ๏ 0 0 0.1 0.2 0.3 0.4 0.5 p trans /ε trans • Max mass data constrains QM EoS but does not rule out generic QM

  14. Dependence of max mass on c 2 QM Soft NM + CSS( c 2 Soft NM + CSS( c 2 QM = 1 / 3) QM = 1) 1.2 1.2 A A D 1 D 1 2.0M ๏ 0.8 1.5M ๏ 0.8 Δε/ε trans Δε/ε trans B 2.1M ๏ C B 0.6 0.6 C 1.6M ๏ ๏ 0.4 0.4 M 1 2.2M ๏ 1.8M ๏ . 2 0.2 0.2 2.3M ๏ 2.0M ๏ 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.1 0.2 0.3 0.4 0.5 p trans /ε trans p trans /ε trans • For soft NM EoS, need c 2 QM � 0 . 4 to get 2 M ⊙ stars

  15. Quark matter EoS Summary ◮ CSS (Constant Speed of Sound) is a generic parameterization of the EoS close to a sharp first-order transition to quark matter. ◮ Any specific model of quark matter with such a transition corresponds to particular values of the CSS parameters c 2 QM ) . ( p trans /ε trans , ∆ ε/ε trans , Its predictions for hybrid star branches then follow from the generic CSS phase diagram. ◮ Existence of 2 M ⊙ neutron star → constraint on CSS parameters . For soft NM we need c 2 ( c 2 QM � 0 . 4 QM = 1 / 3 for free quarks). ◮ More measurements of M ( R ) would tell us more about the EoS of nuclear/quark matter. If necessary we could enlarge CSS to allow for density-dependent speed of sound.

  16. r-modes and gravitational spin-down Polar view Side view An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spon- taneously) when a star spins fast star enough, and if the shear and bulk viscosity are low enough. mode pattern The unstable r -mode can spin the star down very quickly, in a few days if the amplitude is large enough (Andersson gr-qc/9706075 ; Friedman and Morsink gr-qc/9706073 ; Lindblom astro-ph/0101136 ) . neutron star ⇒ some interior physics spins quickly damps the r -modes

  17. r-mode instability region for nuclear matter Shear viscosity grows at low T (long mean free paths). r−modes Spin unstable Bulk viscosity has a freq bulk resonant peak when beta viscosity Ω stabilizes equilibration rate matches shear r−modes r-mode frequency viscosity stabilizes r−modes Temperature T • Instability region depends on viscosity of star’s interior. • Behavior of stars inside instability region depends on saturation amplitude of r-mode.

  18. Evolution of r-mode amplitude α d α 1 dt = α ( | γ G | − γ V ) γ G = τ G = grav radiation rate ( < 0) 1 γ V = τ V = r-mode dissipation rate d Ω = − 2 Q γ V α 2 Ω Q ≈ 0 . 1 for typical star dt dT = − 1 C V ( L ν − P V ) L ν = neutrino emission dt P V = power from dissipation R-mode is unstable when | γ G (Ω) | > γ V ( T ) at infinitesimal α . R-mode saturates when γ V ( α ) rises with α until γ V ( T , α sat ) = γ G ( ⇒ P V = P G ) In general, α sat ( T , Ω) is an unknown function determined by microscopic and astrophysical damping mechanisms.

  19. R-modes and young neutron stars 1.0 Young pulsar cools into instability region 0.8 R-mode quickly saturates Star spins down along 0.6 “heating=cooling” line � � � K Α sat � 10 � 4 Α sat � 1 Star exits instability region at Ω ∼ 50 Hz, 0.4 indp of cooling model 0.2 (Alford, Schwenzer 0.0 arXiv:1210.6091 ) 10 7 10 8 10 9 10 10 10 11 T � K �

  20. Could r-modes explain young pulsar’s slow spin? r-modes with Α sat � 1 α sat ∼ 10 − 2 to 10 − 1 10 � 7 could explain slow rotation of young J0537 � 6910 pulsars ( � a few � df � dt � � s � 2 � thousand years old) 10 � 9 Crab J0537-6910 is 4000 years old Vela 10 � 11 Α sat � 10 � 4 (Alford, Schwenzer arXiv:1210.6091 ) 1 5 10 50 100 500 1000 f � Hz �

  21. How quickly r-modes spin down pulsars 1.0 0.8 For α sat in the range 0.01 to 0.1, 0.6 spindown is complete in � � � K 20,000 to 500 years. Α sat � 10 � 4 Α sat � 1 0.4 (Alford, Schwenzer 0.2 arXiv:1210.6091 ) 0.0 1 10 � 10 10 � 5 10 5 t � y �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend