the mos transistor
play

The MOS Transistor With With Bulk Bulk V DD GND NMOS PMOS G - PowerPoint PPT Presentation

Digital IC Design The Devices NMOS PMOS Drain Drain Source S Gate + Gate Source Drain The MOS Transistor With With Bulk Bulk V DD GND NMOS PMOS G G S S D D D D S S p + p + p + n + n + n + n - p - 2 Important


  1. Digital IC Design The Devices NMOS PMOS Drain Drain Source S Gate + Gate Source Drain The MOS Transistor With With Bulk Bulk V DD GND NMOS PMOS G G S S D D D D S S p + p + p + n + n + n + n - p - 2 Important Dimensions I D as a function of V DS Technology Resistive operation development: Gate Linear V GS =5V Slope due to Region g Drain Source Source channel length 1993: 0.6 um W modulation V DS = V GS -V T 2003: 65 nm t ox 2013: 18 nm? V GS =4V I D Saturation L L V GS 3V V GS =3V The technology is “Diode area” 1 2 3 4 5 named after the V DS [V] gate length L 3 4 1

  2. Problem 1 MOS Model for Long Channels Widely used model for manual calculations Given the data in the table for an NMOS transistor with k ´ =20 μ A/V2, calculate VT0, λ , and W/L. l l t VT0 λ d W/L ´ k W ≥ = 2 + λ - ; ( - ) (1 ) n V V V I V V V DS GS T D 2 GS T DS L I D ( μ A) V GS (V) V DS (V) V SB (V) 2 W V < = + λ - ; ´ (( - ) - )(1 ) DS V V V I k V V V V 1 3 5 0 1210 DS GS T D n GS T DS 2 DS L 2 5 5 0 4410 3 5 10 0 5292 = μ ´ k C Often added to n n ox avoid discontinuity = + γ φ + φ ( -2 - -2 ) V V V 0 T T F F SB 5 6 υ ( ) Velocity Saturation I D versus V DS sat I D (mA) ξ ( ) V DS forms a horizontal E-field 0.5 An increased E-field leads to higher electron velocity V GS -V T = 2.5 - 0.43 = 2.07 V Long channel Long-channel ξ ξ ( ( ) ) However at a critical E-field , the velocity saturates due However at a critical E field the velocity saturates due c 0.4 device to collisions with other atoms V GS = V DD = 2.5 5 m 0.3 υ ≈ 10 for both electrons and holes Short-channel sat s For both 0.2 device Source Source Drain Drain V DSAT = 0.63 V n + n + 0.1 V DS (V) V DS establish a horizontal E-field 0 p - 0 0.5 1.0 1.5 2.0 2.5 7 8 2

  3. I D versus V DS Model for Manual Analysis Linear I D (V GS ) Quadratic I D (V GS ) V DS = V GS - V T A first order model for the velocity y 0 6 0.6 0 25 0.25 V GS = 2.5 saturated region: I D (mA) I D (mA) 0.5 V GS = 2.5 0.2 2 V GS = 2.0 0.4 W V V GS = 2.0 = μ − − 0.15 (( ) ) DSAT I C V V V 0.3 DSAT n ox GS T DSAT V GS = 1.5 2 L 0.1 0.2 V GS = 1.5 V GS = 1.0 0 05 0.05 GS 0.1 V GS = 1.0 0 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 V DS (V) V DS (V) Long Channel Short Channel 9 10 Problem 7 Conclusions - Static Behavior Long channel I D [uA] 1800 device 1600 lambda=120/1200=0.1 2 1400 W V Linear Region I D =1200 dI D /dV DS =60/0.5=120 = − − ´ (( ) ) 1200 DS I k V V V 1000 D n GS T DS V DS < V GS -V T 2 2 L L DS GS T 800 800 V GS =2V lambda=50/500=0.1 600 I D =500 dI D /dV DS =50/1=50 400 200 ´ k W 0 Saturated Region = − 2 + λ 0 0.5 1 1.5 2 2.5 3 ( ) (1 ) n I V V V V DS [V] D 2 GS T DS V DS > V GS -V T L Sqrt(I D ) 40 x V GS [V] V GS [V] I D [uA] I D [uA] Sqrt(I D ) Sqrt(I D ) V DS =3V 1 50 7,07 = + γ − φ + − − φ V T =0.5V x ( 2 2 ) V V V 20 Threshold Voltage 2 500 22,36 0 T T F SB F 3 1600 40,00 x V GS 1 2 3 11 12 3

  4. Three Regions Conclusions - Static Behavior Short channel device V DSAT 2 W V = ' − − + λ (( ) )(1 ) Resistive DS I k V V V V = 2 V D n GS T DS DS V 2 2 0.15 0 15 (mA) (mA) L L I I GS GS D Velocity ' k W Linear = − + λ ( ) (1 2 ) Saturated 0.1 n saturated = I V V V 1.5 V V D 2 GS T DS L GS V DSAT = V GS -V T 1.06V 0.5 2 0.63= V GS -0.43 W V = − − + λ ' = (( ) )(1 ) Ve locity saturated 1 V DSAT I k V V V V V GS D n GS T DSAT 2 DS L V GS -V T (V) V Saturated DS 0 0 1 2 13 14 Problem 3a A Unified Model for Manual Analysis 250 2 W V 200 = − − + λ ' (( ) min )(1 ) I k V V V V min D n GS T DS 2 150 L Id [uA] 100 50 = = − min( min( , , ) ) V V V V V V V V V V min 0 0 GS T DS DSAT 0 0,5 1 1,5 2 2,5 3 Vds [V] Vgs = 1 Vgs = 1,75 Vgs = 2,5 Saturation Voltage 15 16 4

  5. A PMOS Transistor Transistor Model for Manual Analysis Velocity saturation is less pronounced for PMOS due to lower mobility I ( A) I D (mA) 0 V GS = -1.0V -0.02 Assume all V GS = -1.5V variables -0.04 negative! negative! V V GS = -2.0V = -2 0V -0.06 -0.08 V GS = -2.5V -0.1 -2.5 -2 -1.5 -1 -0.5 0 V DS (V) 17 18 MOS Dynamic Behavior MOS Capacitances Source Gate Drain Equivalent switching resistance C GS C GD t ox V GS ≥ V T V V n + n + I D I D V GS = V DD V GS = V DD C G R C SB C DB on S D Bulk Cap. R mid R mid R 0 R 0 Junction Cap. V DS V DS V DD /2 V DD /2 V DD V DD Overlap Cap. X d 19 20 5

  6. Junction Capacitance Channel Capacitance (Table 3-4) To Bulk To Source To Drain Total Gate Cap. Drain/ Source Diffusion C GCB C GCS C GCD C G C Diff = C Bot + C SW C Diff C Bot C SW Bottom Bottom 0 0 Cutoff C OX W L C OX W L + 2 C 0 W 0 Resistive (1/2) C OX W L (1/2) C OX W L C OX W L + 2 C 0 W e t 0 0 Don’t count the wall Saturation (2/3) C OX W L (2/3) C OX W L + 2 C 0 W a G towards the channel s d Cut off: No channel ⇒ C GC = C GCB r a w l e o n T T n n a a h C Resistive: Channel ⇒ Divide C GC in two parts W Side Saturation: ≈ 2/ 3 of Channel to source Wall L s 21 22 Problem 8 BL1 BL2 GND 0.2x0.2 um Ts Cell Border RWL Tr Node Y Contact X Tw WWL Calculate the capacitance in node Y if it consists of the gate capacitance in Ts and the drain capacitance in Tw. C ox = 5 fF/um 2 , C j0 = 1.5 fF/um 2 , and C jsw0 = 0.25 fF/m 23 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend