taming astrophysics and particle physics in the direct
play

Taming astrophysics and particle physics in the direct detection of - PowerPoint PPT Presentation

Taming astrophysics and particle physics in the direct detection of dark matter Bradley J. Kavanagh LPTHE & IPhT (CEA/Saclay) LPTHE seminar - 12th Jan. 2016 bradley.kavanagh@lpthe.jussieu.fr @BradleyKavanagh NewDark Based on


  1. Taming astrophysics and particle physics in the direct detection of dark matter Bradley J. Kavanagh LPTHE & IPhT (CEA/Saclay) LPTHE seminar - 12th Jan. 2016 bradley.kavanagh@lpthe.jussieu.fr @BradleyKavanagh NewDark

  2. Based on… arXiv:1207.2039 arXiv:1303.6868 arXiv:1312.1852 arXiv:1410.8051 in collaboration with Anne Green and Mattia Fornasa, and… arXiv:1505.07406 as well as ongoing work with Chris Kouvaris, Riccardo Catena and Ciaran O’Hare. Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  3. Direct detection of dark matter DM m χ & 1 GeV N N v ∼ 10 − 3 χ χ Measure energy (and possibly direction) of recoiling nucleus Reconstruct the mass and cross section of DM However, we don’t know what speed the DM particles have v and we don’t know how they interact with nucleons! Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  4. Overview Direct detection event rate Astro uncertainties: Particle uncertainties: N-body simulations Non-relativistic operators What can go wrong? Different signals How to solve it How to distinguish them Combining uncertainties Future work Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  5. Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  6. Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  7. Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  8. Particle physics Astrophysics Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  9. Particle physics Astrophysics Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  10. Direct detection event rate Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  11. Event rate v m A m χ ✓ ρ χ ◆ • Flux of DM particles with speed is f 1 ( v ) d v v v m χ • Minimum speed required to excite a recoil of energy in a E R nucleus of mass is: m A s m A E R v min = v min ( E R ) = 2 µ 2 χ A • Event rate per unit detector mass is then Z ∞ d R vf 1 ( v ) d σ ρ χ = d v d E R d E R m χ m A v min Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  12. Event rate v m A m χ ✓ ρ χ ◆ • Flux of DM particles with speed is f 1 ( v ) d v v v m χ • Minimum speed required to excite a recoil of energy in a E R nucleus of mass is: m A s m A E R v min = v min ( E R ) = 2 µ 2 ρ χ ∼ 0 . 2 − 0 . 6 GeV cm − 3 χ A Read (2014) • Event rate per unit detector mass is then [arXiv:1404.1938] Z ∞ d R vf 1 ( v ) d σ ρ χ = d v d E R d E R m χ m A v min Particle and nuclear physics Astrophysics Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  13. Standard Halo Model (SHM) Speed distribution obtained for a spherical, isotropic and ρ ( r ) ∝ r − 2 isothermal Galactic halo, with density profile . Leads to Maxwell-Boltzmann distribution: − ( v − v e ) 2 ✓ ◆ f ( v ) ∝ exp Θ ( v esc − | v − v e | ) 2 σ 2 v I → f 1 ( v ) = v 2 f ( v ) d Ω v √ 2 σ v ≈ 220 km s − 1 with . v e ≈ v e ∼ 220 − 250 km s − 1 σ v ∼ 155 − 175 km s − 1 E.g. Feast et al. (1997) [astro-ph/9706293], Bovy et al. (2012) [arXiv:1209.0759] 
 − 41 km s − 1 v esc = 533 +54 Piffl et al. (RAVE, 2013) [arXiv:1309.4293] Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  14. Cross section Typically assume contact interactions (heavy mediators) In the non-relativistic limit, obtain two main contributions. Write in terms of DM-proton cross section : σ p Spin-independent (SI) σ p d σ A SI χ p v 2 A 2 F 2 SI χχ ¯ SI ( E R ) NN ¯ ∝ µ 2 d E R Nuclear physics Spin-dependent (SD) ∝ σ p d σ A J + 1 SD SD F 2 χγ 5 γ µ χ ¯ N γ 5 γ µ N SD ( E R ) ¯ µ 2 χ p v 2 d E R J We’ll look at more general interactions in the second half of the talk… Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  15. The final event rate ρ χ σ p d R i C i F 2 = i ( E R ) η ( v min ) i = SI , SD d E R m χ µ 2 χ p SI interactions, SHM distribution Enhancement factor, C i F 2 Form factor, i ( E R ) Mean inverse speed, Z ∞ f 1 ( v ) η ( v min ) = d v v v min Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  16. Astrophysical uncertainties Z ∞ d R vf 1 ( v ) d σ ρ χ = d v d E R d E R m χ m A v min Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  17. N-body simulations High resolution N-body simulations can be used to extract the DM speed distribution Non-Maxwellian Debris flows Dark disk structure 6 5 5 f 1 ( v ) [10 − 3 km − 1 s] Aq-A-1 5 4 4 4 3 3 f H v L * 10 3 f(v) × 10 -3 L 10 3 2 2 2 1 1 1 0 0 0 0 100 200 300 400 500 0 100 200 300 400 500 600 700 0 150 300 450 600 ê s L v H km ê s L v [km s -1 ] Vogelsberger et al. (2009) Kuhlen et al. (2012) Pillepich et al. (2014) 10 4 10 4 [arXiv:0812.0362] [arXiv:1202.0007] [arXiv:1308.1703] 10 4 10 4 However, N-body simulations cannot probe down to the 5000 5000 Counts Counts sub-milliparsec scales probes by direct detection… 1000 1000 500 500 Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016 100 100 0 100 200 300 400 500 0 100 200 300 400 500 600 700 ê s L ê s L

  18. Local substructure May want to worry about ultra-local substructure - subhalos and streams which are not completely phase-mixed. Analysis of N-body simulations indicate that it is unlikely for a single stream to dominate the local density - lots of different ‘streams’ contribute to make a smooth halo. Helmi et al. (2002) [astro-ph/0201289] Vogelsberger et al. (2007) [arXiv:0711.1105] However, this does not exclude www.cosmotography.com the possibility of a stream - e.g. due to the ongoing tidal disruption of the Sagittarius dwarf galaxy. Freese et al. (2004) [astro-ph/0309279] Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  19. Examples Z 1 f 1 ( v 0 ) I f 1 ( v ) = v 2 f ( v ) d v 0 f ( v ) = f ( v ) d Ω v η ( v ) = v 0 v What happens if we assume the wrong speed distribution? Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  20. What could possibly go wrong? Generate mock data for 3 future experiments - Xe, Ar, Ge - for a ( m χ , σ p SI ) given assuming a stream distribution function. Then construct confidence contours for these parameters, assuming: (correct) stream distribution (incorrect) SHM distribution Benchmark Best fit Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  21. A solution Many previous attempts to tackle this problem Strigari & Trotta [arXiv:0906.5361]; Fox, Liu & Weiner [arXiv:1011.915]; Frandsen et al. [arXiv:1111.0292]; Feldstein & Kahlhoefer [arXiv:1403.4606] Write a general parametrisation for the speed distribution: Peter [arXiv:1103.5145] N − 1 ! X a k v k f ( v ) = exp − k =0 BJK & Green [arXiv:1303.6868] This form guarantees a positive distribution function. Now we attempt to fit the particle ( m χ , σ p ) physics parameters , as well as the astrophysics parameters . { a k } f 1 ( v ) = v 2 f ( v ) Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  22. Results Using our parametrisation 2 σ 1 σ Best fit m χ = m rec Assuming incorrect distribution But , there is now a strong degeneracy in the reconstructed cross section… Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  23. Cross section degeneracy Z ∞ d R f 1 ( v ) d v ∝ σ d E R v v min Minimum DM speed probed by a typical Xe experiment This is a problem for any astrophysics-independent method! Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  24. Incorporating IceCube B IceCube can detect neutrinos from DM annihilation in the Sun A Rate driven by solar capture of DM, which depends on the DM-nucleus scattering cross section Crucially, only low energy DM particles are captured: Z v max d C f 1 ( v ) d v d V ∼ σ v 0 But Sun is mainly spin-1/2 Hydrogen - so we need to include SD interactions… Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

  25. Direct detection only Consider a single benchmark: SI = 10 − 45 cm 2 ; σ p SD = 2 × 10 − 40 cm 2 m χ = 30 GeV; σ p ν µ ¯ annihilation to , SHM+DD distribution ν µ Benchmark Bradley J Kavanagh (LPTHE & IPhT) Direct detection uncertainties LPTHE seminar - 12th Jan. 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend