smart microphones
play

Smart Microphones n Sound source direction finding, null- and beam- - PDF document

I n t e g r a t e d M e d i a S y s t e m s C e n t e r Array Audio Signal Processing and Virtual Microphones Chris Kyriakakis IMSC Immersive Audio Laboratory University of Southern California N a t i o n a l S c i e n c e F o u n d


  1. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Array Audio Signal Processing and Virtual Microphones Chris Kyriakakis IMSC Immersive Audio Laboratory University of Southern California N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 1 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Smart Microphones n Sound source direction finding, null- and beam- steering in the presence of interference n Arrays with local processing power u Compensate for moving sensors u Blind calibration u Change directivity characteristics n New models required to deal with real-world signals u Alpha-stable distributions n Virtual microphones u Synthesize signals in locations where there are no microphones N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 2

  2. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Array Methods in Noisy Environments n Traditional Gaussian modeling of noise signals fails when the signals exhibit impulsive behavior n The Symmetric α -Stable ( S α S ) model, can better account for the outliers that exist in real-world signals u Example: Time Delay Estimation n In many array applications we often encounter signals that are corrupted by multiplicative noise u Traditional approach: stochastic Gaussian signal, corrupted by a Gaussian noise u Alternative: multi-dimensional Gaussian signal with LŽvy noise. N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 3 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Examples of Impulsive Noise N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 4

  3. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Comparison of Gaussian and S α S models CD tray Footsteps α = 1.68 S α S α = 1.8 S α S Measured Measured Gaussian Gaussian n Real measurements in a typical room N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 5 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Comparison of Gaussian and S α S models Chair Typing Gaussian α = 1.69 α = 1.44 S α S S α S Measured Gaussian Measured N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 6

  4. I n t e g r a t e d M e d i a S y s t e m s C e n t e r New Algorithms for Time-Delay Estimation n TDE techniques based on second-order statistics fail when the noise is S α S n Alternative methods, based on Fractional Lower- Order Statistics u Fractional Lower Order Correlation Function instead of Cross Spectrum (PHAT) A R R j ω τ w = = + ε A e k 1 2 R R k A 1 2 R R 1 2 FLOS- PHAT algorithm N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 7 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Performance Comparison Better 1 25 dB 0.9 6 dB 0.8 0.7 Detection score 12 dB 0.6 0.5 0.4 0.3 PHAT 0.2 FLOS-PHAT 0.1 Worse 0 α parameter 1 1.2 1.4 1.6 1.8 2 FLOS-PHAT performs better than the second-order based PHAT algorithm and adds little n computational expense N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 8

  5. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Multiple Sound Sources n κ sources and ρ sensors n Each sensor receives: κ ∑ ( ) = ( ) + ( ) x t a s t u t r r k k r , k = 1 n Array receives: ( ) + ( ) ( ) = A x t s t u t N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 9 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Sub-Gaussian Signal n The Sub-Gaussian n LŽvy Distribution. signal is formed as a product of a Gaussian density with the root n This is an α -Stable distribution of a totally skewed α - with α =0.5 and completely Stable density. skewed to the right. ( β = 1) n So now the transmitted signal v(t) will be corrupted by multiplicative noise u(t) which follows the LŽvy distribution N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 10

  6. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Time Domain n Time domain of a 2 dimensional sub-Gaussian process: N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 11 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Maximum Likelihood Estimator n From the Density of the sub-Gaussian distribution we can find the Maximum likelihood estimator to be: n Simulations can be made to show the effectiveness of this ML estimator N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 12

  7. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Simulations n Σ=[1 0.2 ; 0.2 1] Assuming: n 15 linearly spaced sensors n θ 1 =−0.4, θ 2 =0.6 n 2000 samples received N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 13 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Virtual Microphones S 2 n Minimize appropriate cost function H 2 to find filter coefficients S 1 H 1 n LP Norms S p ( ) − ( ) = ∑ 1 F s n s n ˆ p 1 n Synthesize signal in a location where ≤ < 1 p 2 there is no microphone S H S S H S = , = 1 1 2 2 H p = = H 2 1 H p 1 2 N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 14

  8. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Audio ÒMorphingÓ ORTF Left Tymp N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 15 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Virtual Mic Performance 0 −10 −20 −30 Normalized Error (dB) Normalized Error (dB) −40 −50 −60 −70 −80 −90 −100 0 2 4 6 8 10 12 14 16 18 20 Frequency (kHz) Frequency (kHz) N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 16

  9. I n t e g r a t e d M e d i a S y s t e m s C e n t e r Multichannel Transmission Scheme n Send one channel n Synthesize remaining channels at the receiving end from a set of stored filters u Local processing can be used to generate filters 1 channel Multichannel Network Stored Filters N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 17 I n t e g r a t e d M e d i a S y s t e m s C e n t e r Conclusions n Local processing at each microphone in an array can be used to enhance performance in TDE applications and source localization in the presence of noise n Non-traditional models give better performance n Virtual microphone signals can be synthesized remotely from a single reference and a set of filters computed at the sensor N a t i o n a l S c i e n c e F o u n d a t i o n E n g i n e e r i n g R e s e a r c h C e n t e r 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend