simulation of the ephaptic effect in the cone horizontal
play

Simulation of the Ephaptic Effect in the Cone- Horizontal Cell - PowerPoint PPT Presentation

Simulation of the Ephaptic Effect in the Cone- Horizontal Cell Synapse of the Retina Carl Gardner, Jeremiah Jones, Steve Baer, & Sharon Crook School of Mathematical & Statistical Sciences Arizona State University


  1. Simulation of the Ephaptic Effect in the Cone- Horizontal Cell Synapse of the Retina Carl Gardner, Jeremiah Jones, Steve Baer, & Sharon Crook School of Mathematical & Statistical Sciences Arizona State University

  2. http://webvision.med.utah.edu/

  3. Schematic (Kamermans & Fahrenfort) of horizontal cell dendrite contacting cone pedicle (approx. 1 micron 2 ): simulate 400 nm membranes × 40 nm gap & 10/20 nm openings at side of HC

  4. ◮ Experiments show illumination of cone causes hyperpolarization of horizontal cells & increased levels of intracellular cone Ca ◮ Ephaptic hypothesis: specialized geometry of synapse can force currents through high-resistance bottlenecks causing potential drop in extracellular cleft ◮ Cone membrane senses this as depolarization, which increases activation of voltage-sensitive Ca channels ◮ Implies Ca 2 + current is directly modulated by electric potential

  5. Drift-Diffusion (PNP) Model cone pedicle V CP � Φ � � Σ i Ca gap cations Φ � � Σ i V HC � horizontal cell ∂ n i ∂ t + ∇· f i = 0 , i = Ca 2 + , Na + , K + , Cl − , . . . z i = q i f i = z i µ i n i E − D i ∇ n i , j i = q i f i , j = � j i , q e i � E = −∇ φ q i n i , ∇· ( ǫ ∇ φ ) = − i parabolic/elliptic system of PDEs

  6. A Model of the Membrane (similar to Mori-Jerome-Peskin) n i Φ Φ � � �Σ inside Σ i m Φ � � outside �Σ Σ i n i Φ

  7. Poisson-Boltzmann Equation − q i φ � � n i = n bi exp kT �� � − q i φ � � φ � q i n bi exp q 2 i n bi ∇· ( ǫ ∇ φ ) = − ≈ kT kT i i � Debye length l D = ǫ kT / i q 2 i n bi �� � ≈ 1 nm For z ⊥ & near membrane φ zz ≈ φ/ l 2 D 1 − q i φ ± � � φ ≈ φ ± e −| z | / l D , kT e −| z | / l D n i ≈ n ± bi � ∞ q i n i − n + dz ≈ q i l D n + i − n + Set σ + � � � � i = bi bi 0

  8. 20 A 15 10 Σ PB 5 M 0 � 3 � 2 � 1 0 1 2 3 u 0 Comparison of nearly exact Poisson-Boltzmann solution for σ i / ( q i n bi l D ) vs. u 0 = q i ( φ 0 − φ b ) / ( kT ) with approximations

  9. Jump conditions for Poisson’s equation [ φ ] ≡ φ + − φ − = V = σ C m n · ∇ φ ] = 0 [ˆ BCs for drift-diffusion equation (Mori-Jerome-Peskin), but we use σ ± n ± i − n ± i = q i l D � � bi ∂ n + ∂σ + i i n · j + = q i l D i − j mi = ˆ ∂ t ∂ t ∂σ − ∂ n − i i n · j − = q i l D i + j mi = − ˆ ∂ t ∂ t � � σ − σ + σ ≡ i = − i i i

  10. Drift-Diffusion Model with Membrane Boundary Conditions ∂ n i ∂ t + ∇· ( z i µ i n i E ) = D i ∇ 2 n i , i = Ca 2 + , Na + , K + , Cl − E = −∇ φ � q i n i , ∇· ( ǫ ∇ φ ) = − bi + σ − CP , HC − σ BCs : n − i i = n − φ − CP , HC = V + , q i l D C m ∂σ − i n · j − � σ − i + j mi , = − ˆ σ = − i ∂ t g Ca ( V CP − E Ca ) ( CP ) j m , Ca = 1 + exp { ( θ − V CP ) /λ m } ( HC ) j hemi = � g i ( V HC − V i ) = g hemi V HC cations V CP , HC ≡ V + CP , HC − φ − CP , HC

  11. cone pedicle V CP � Φ � � Σ i Ca gap cations Φ � � Σ i V HC � horizontal cell n · ∇ φ = 0 BCs at openings are ambient: n i = n bi , ˆ 1. Apply 2D TRBDF2 drift-diffusion code (with SOR for Poisson equation) to cone-horizontal cell problem with model of membrane 2. Investigate relative importance of electrical (ephaptic) [vs. chemical (GABA) or pH] effects

  12. TRBDF2 Numerical Method √ du dt = f ( u , t ) , γ = 2 − 2 u n + γ − γ ∆ t n 2 f n + γ = u n + γ ∆ t n 2 f n ( TR ) γ ( 2 − γ ) u n + γ − ( 1 − γ ) 2 u n + 1 − 1 − γ 1 2 − γ ∆ t n f n + 1 = γ ( 2 − γ ) u n ( BDF2 ) Use Newton’s method if f ( u ) is nonlinear n �Γ n n � 1 TR BDF2

  13. Advantages of TRBDF2 1. One-step (composite) method 2. Second-order accurate & L-stable 3. Easy to adjust ∆ t dynamically C 2 TR TRBDF implant after one timestep 1.5 1 0.5 y 2 4 6 8

  14. Known Biological Parameters Parameter Value Description n b , Ca 10 − 4 , 2 mM intra/extracellular bath density of Ca 2 + n b , Na intra/extracellular bath density of Na + 10, 140 mM n b , K intra/extracellular bath density of K + 150, 2.5 mM n b , Cl intra/extracellular bath density of Cl − 160, 146.5 mM ǫ 80 dielectric coefficient of water N s 20 number of spine heads per cone pedicle A m 0.1 µ m 2 spine head area C m 1 µ F/cm 2 membrane capacitance per area V Ca reversal potential for Ca 2 + 50 mV V Na reversal potential for Na + 50 mV V K reversal potential for K + − 60 mV G hemi 5 nS hemichannel conductance

  15. Known Biological Parameters Parameter Value Description D Ca 0.8 nm 2 /ns diffusivity of Ca 2 + D Na 1.3 nm 2 /ns diffusivity of Na + D K 2 nm 2 /ns diffusivity of K + D Cl 2 nm 2 /ns diffusivity of Cl − 32 nm 2 /(V ns) mobility of Ca 2 + µ Ca 52 nm 2 /(V ns) mobility of Na + µ Na 80 nm 2 /(V ns) µ K mobility of K + mobility of Cl − 80 nm 2 /(V ns) µ Cl

  16. Fitting Parameters in Model for CP Transmembrane I Ca g Ca ( V CP − E Ca ) j m , Ca = 1 + exp { ( θ − V CP ) /λ } Parameter Value Description E Ca cone reversal potential for Ca 2 + 37 mV G Ca 1.5 nS Ca conductance θ off − 33 mV kinetic parameter, bg off (nonlocal) θ on − 40 mV kinetic parameter, bg on (nonlocal) λ 5 mV kinetic parameter Note that g i = G i / ( N s A m ) & I Ca = N s A m j m , Ca da �

  17. Drift-diffusion simulations

  18. Drift-diffusion simulations

  19. Experimental IV curves (Kamermans & Fahrenfort)

  20. 10 bkgd off bkgd on 0 bkgd off (exp.) bkgd on (exp.) −10 −20 Current (pA) −30 −40 −50 −60 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 0 10 Membrane Potential (mV) I Ca vs. V CP shift turning on background illumination

  21. 40 d = 10/20 d = 20/40 35 d = 40/80 30 Current Shift (pA) 25 20 15 10 5 0 −70 −60 −50 −40 −30 −20 −10 0 10 Membrane Potential (mV) Ephaptic effect: Shift in I Ca vs. V CP for varying opening widths

  22. Most recent experimental IV curves (Kamermans et al.)

  23. 2D Complex Geometry of the Synapse ◮ Replace nonlocal with local BC for bg off/on: add voltage ground ◮ Theoretical argument (Kamermans) that bg off/on produces translation of I Ca curve (without GABA or pH) ◮ Model effects of complex geometry & include bipolar cell ◮ Solve drift-diffusion PDEs inside cells as well as outside ◮ Specify holding potentials U CP , U HC , & U BC as in voltage clamp experiment, & set ground φ = U ref at bottom right corner ◮ Computed potential shows compartment model is not adequate

  24. 2D Complex Geometry of Synapse

  25. Finite-Volume (Box) Method & Grid Intracellular + − n Extracellular

  26. U CP = − 15 mV, U BC = − 60 mV, U ref = − 40 mV U HC = − 40/ − 60 mV for bg off/on

  27. New Fitting Parameters in Model for CP Transmembrane I Ca g Ca ( V CP − E Ca ) j m , Ca = 1 + exp { ( θ − V CP ) /λ } Parameter Value Description E Ca cone reversal potential for Ca 2 + 37 mV G Ca 1.5 nS Ca conductance θ 3 mV kinetic parameter (independent of bg) λ 2 mV kinetic parameter

  28. Neutral Bipolar Cell Depolarized Bipolar Cell 0 0 HC/BC = −40/−60 HC/BC = −40/−60 −20 −20 HC/BC = −60/−60 HC/BC = −60/−40 −40 −40 −60 −60 −80 −80 −80 −60 −40 −20 0 −80 −60 −40 −20 0 Hyperpolarized Bipolar Cell Shift Curves 0 100 HC/BC = −40/−60 Neutral −20 HC/BC = −60/−80 Depolarized 50 Hyperpolarized −40 −60 0 −80 −50 −80 −60 −40 −20 0 −80 −60 −40 −20 0 I Ca vs. U CP shift turning on background illumination

  29. Future Work 1. Model effects of GABA & glutamate 2. Model arrays of cones & horizontal cells—homogenize over small spatial scales 3. Multiscale modeling: integrate out shortest time scales in drift-diffusion model to obtain intermediate model, so we can treat time-dependent illuminations of retina

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend