quantum transport through coulomb blockade systems
play

Quantum Transport through Coulomb-Blockade Systems Bj orn Kubala - PowerPoint PPT Presentation

Quantum Transport through Coulomb-Blockade Systems Bj orn Kubala Institut f ur Theoretische Physik III Ruhr-Universit at Bochum COQUSY06 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron


  1. Quantum Transport through Coulomb-Blockade Systems Bj¨ orn Kubala Institut f¨ ur Theoretische Physik III Ruhr-Universit ¨ at Bochum COQUSY06 – p.1

  2. Overview • Motivation • Single-electron box/transistor • Coupled single-electron devices • Model and Technique • Real-time diagrammatics • Thermoelectric transport • Thermal and electrical conductance • Quantum fluctuation effects on thermopower • Multi-island systems • Diagrammatics for complex systems • New tunneling processes COQUSY06 – p.2

  3. Single-Electron Box Gate attracts charge to island. -1 0 1 Tunnel barrier → quantized charge E ch (0) E C E ch (1) E ch Q Q R L V E ch (-1) g 2 1 C g box <n> C J 0 -1 Quantitatively: -2 -1 0 1 n x Q 2 + Q 2 L R E ch = + Q R V g 2 C J 2 C g e 2 Coulomb staircase ( n − n x ) 2 + const. , = 2 C Σ COQUSY06 – p.3

  4. Single-Electron Transistor 0 -1 1 E ch (0) E C Two contacts → transport E ch E ch (1) E ch (-1) V g 2 1 <n> V −V t 0 t -1 -2 Quantitatively: 0.5 G V /G as Q 2 + Q 2 L R E ch = + Q R V g 2 C J 2 C g e 2 ( n − n x ) 2 + const. , = 2 C Σ -1 0 1 n x Coulomb oscillations COQUSY06 – p.4

  5. Simple Coupled Device V ,1 g Box: SET1 V g SET2 +V/2 −V/2 V g ,2 charge on C c (sawtooth) Transistor measures input for transistor box charge 1.0 Transistor: box V Q 0.5 g 0.0 V −V 0.0 0.5 1.0 t t nx one step of Coulomb staircase (Lehnert et al. PRL ’03, Sch ¨ afer et al. Physica E ’03) COQUSY06 – p.5

  6. Overview • Motivation • Single-electron box/transistor • Coupled single-electron devices • Model and Technique • Real-time diagrammatics • Thermoelectric transport • Thermal and electrical conductance • Quantum fluctuation effects on thermopower • Multi-island systems • Diagrammatics for complex systems • New tunneling processes COQUSY06 – p.6

  7. Real-time diagrammatics for an SET (Schoeller and Sch ¨ on, PRB ’94) Hamiltonian: H = H L + H R + H I + H ch + H T = H 0 + H T charge degrees of freedom separated from fermionic degrees: charging energy tunneling H ch = e 2 � krn c ln e − iϕ + h . c . � � � kl a † T rn H T = 2 C ( ˆ N − n x ) 2 r = R,L kln e ± iϕ = | N ± 1 �� N | Time evolution of e.g. density matrix of charge governed by propagator Q : Z t 0 Z t » „ « „ « – Y n ′ 1 ,n 1 2 | ˜ � n ′ dt ′ H T ( t ′ ) I dt ′ H T ( t ′ ) I | n ′ 2 ,n 2 = Trace T exp − i | n 2 �� n 1 | T exp − i 1 � n ′ t t 0 | {z } fermionic d.o.f’s H H T H T T ^ A(t) H ⇒ Keldysh contour T − t’ 8 t t t t t 1 2 3 4 COQUSY06 – p.7

  8. Dyson-equation Integrating out reservoirs/ contracting tunnel vertices ⇒ each contraction ⇔ golden-rule rate: ω − µ r R K α r ± ( ω ) = � dEα r 0 f ± r ( E + ω ) f ∓ ( E ) = ± α r e ± β ( ω − µr ) − 1 with α r 0 = 4 π 2 R r . 0 1 0 1 0 1 0 −1 0 1 0 −1 L R L R R R L L |−1><−1| R 1 0 1 0 1 0 −1 −2 −1 diagram with sequential, cotunneling and 3rd order processes Write full propagator � as Dyson equation : n’ 1 n 1 n’ 1 n 1 n’ 1 n ’’ n 1 1 = (0) + (0) Π Π Π Σ Π to calculate: n’ 2 n 2 n’ 2 n 2 n’ 2 n’’ n 2 2 self-energy � = � (0) + � � � (0) � with free propagator (w/o tunneling) Q (0) COQUSY06 – p.8

  9. Overview • Motivation • Single-electron box/transistor • Coupled single-electron devices • Model and Technique • Real-time diagrammatics • Thermoelectric transport • Thermal and electrical conductance • Quantum fluctuation effects on thermopower • Multi-island systems • Diagrammatics for complex systems • New tunneling processes COQUSY06 – p.9

  10. Electrical and thermal conductance V ,T V ,T Z Z dω ( βω/ 2) 2 dω βω/ 2 k B L L R R G V = G as sinh βω A ( ω ) ; G T = − G as sinh βω A ( ω ) e V g g V = G V g T = − e G T ; Thermoelectric transport: G as k B G as perturbative expansion to 2nd order in coupling α 0 I = G V V + G T δT V/T + g ˜ g V/T = g seq V/T + g ˜ α V/T + g cot ∆ V/T A ( ω ) = [ C < ( ω ) − C > ( ω )] / (2 πi ) g V -g T 0.1 g V/T 0.5 seq 0.04 g V/T 0.4 0.2 0 0 cot g V/T 0.3 -0.04 ∼ α g V/T 0.2 -0.1 0.1 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 ∼ 0.1 ∆ g V/T 0 0 n x n x 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 COQUSY06 – p.10

  11. Sequential tunneling V/T + g ˜ g V/T = g seq V/T + g ˜ α ∆ V/T + g cot V/T • sequential tunneling: 8 < 1 : V β ∆ 0 / 2 g seq V/T = κ 0 with κ 0 = sinh β ∆ 0 β ∆ 0 / 2 : T : Resonances around degeneracy points ∆ n = 0 . g V -g T 0.1 g V/T 0.5 seq 0.04 g V/T 0.4 0.2 0 0 cot g V/T 0.3 -0.04 ∼ α g V/T 0.2 -0.1 0.1 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 ∼ ∆ 0.1 g V/T 0 0 n x n x 0.5 0.6 0.7 0.8 0.6 0.7 0.8 0.5 COQUSY06 – p.11

  12. Cotunneling V/T + g ˜ g V/T = g seq V/T + g ˜ α ∆ V/T + g cot V/T • standard cotunneling: „ 1 « 2 2 π 2 1 g cot 3 ( k B T ) 2 = α 0 − V ∆ 0 ∆ − 1 „ 1 « 2 „ 1 « 8 π 4 1 1 g cot 15 ( k B T ) 3 = α 0 − + T virtual occupation ∆ 0 ∆ − 1 ∆ 0 ∆ − 1 of unfavourable dominant away from resonance | ∆ n | ≫ k B T . charged state. g V -g T 0.1 g V/T 0.5 seq 0.04 g V/T 0.4 0.2 0 0 cot g V/T 0.3 -0.04 ∼ α g V/T 0.2 -0.1 0.1 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 ∼ 0.1 ∆ g V/T 0 n x 0 n x 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 COQUSY06 – p.12

  13. Cotunneling V/T + g ˜ g V/T = g seq V/T + g ˜ α ∆ V/T + g cot V/T • standard cotunneling: „ 1 « 2 2 π 2 1 g cot 3 ( k B T ) 2 = α 0 − V ∆ 0 ∆ − 1 8 „ 1 « 2 „ 1 « 8 π 4 < 1 : V 1 1 g cot 15 ( k B T ) 3 = α 0 − + κ n = T ∆ 0 ∆ − 1 ∆ 0 ∆ − 1 β ∆ n / 2 : T : V/T = κ − 1 ∆ − 1 ∂ 2 φ − 1 + κ 0 ∆ 0 ∂ 2 φ 0 + κ 0 + κ − 1 · φ 0 − φ − 1 + ∆ − 1 ∂φ − 1 − ∆ 0 ∂φ 0 g cot 2 E C g V -g T 0.1 g V/T 0.5 seq 0.04 g V/T 0.4 0.2 0 0 cot g V/T 0.3 -0.04 ∼ α g V/T 0.2 -0.1 0.1 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 ∼ 0.1 ∆ g V/T 0 n x 0 n x 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 COQUSY06 – p.12

  14. Renormalized sequential tunneling 8 < 1 : V V/T + g ˜ g V/T = g seq κ 0 = V/T + g ˜ α V/T + g cot ∆ β ∆ 0 / 2 : T : V/T ω ω A( ) • Renormalization of coupling: » – β ∆ 0 / 2 ∂ (2 φ 0 + φ − 1 + φ 1 ) + φ − 1 − φ 1 g ˜ α V/T = κ 0 sinh β ∆ 0 E C sequential tunneling but spectral density A ( ω ) energy gap: broadened and shifted. » – ∂ β ∆ 0 / 2 ˜ ∆ ⇓ g V/T = κ 0 (2 φ 0 − φ − 1 − φ 1 ) ∂ ∆ 0 sinh β ∆ 0 renormalized parameters for coupling: ˜ α charging energy gap: ˜ ∆ n COQUSY06 – p.13

  15. Renormalization by quantum fluctuations » – » – β ∆ 0 / 2 ∂ (2 φ 0 + φ − 1 + φ 1 ) + φ − 1 − φ 1 ∂ β ∆ 0 / 2 ˜ g ˜ α ∆ V/T = κ 0 ; g V/T = κ 0 (2 φ 0 − φ − 1 − φ 1 ) sinh β ∆ 0 E C ∂ ∆ 0 sinh β ∆ 0 Quantum fluctuations ⇒ renormalization of system parameters α, ˜ G ( α 0 , ∆ 0 ) = G seq (˜ ∆) + cot. terms α∂G seq ( α 0 , ∆ 0 ) ” ∂G seq ( α 0 , ∆ 0 ) “ α, ˜ ˜ G seq (˜ expand: ∆) = ˜ + ∆ − ∆ 0 ∂α 0 ∂ ∆ 0 renormalization of parameters (perturbative in α 0 ): „ βE C  « » „ «–ff α ˜ iβ ∆ 0 = 1 − 2 α 0 − 1 + ln − ∂ ∆ 0 ∆ 0 Re Ψ α 0 π 2 π „ βE C » « „ «– ˜ ∆ iβ ∆ 0 = 1 − 2 α 0 1 + ln − Re Ψ ∆ 0 π 2 π α and ˜ many-channel ∆ decrease logarithmically by renormalization! ˜ ⇔ Kondo-physics (for lowering temperature and increasing coupling α 0 ) COQUSY06 – p.14

  16. Renormalization effects on G V/T α, ˜ G ( α 0 , ∆ 0 ) = G seq (˜ ∆) + cot. terms α and ˜ ∆ decrease logarithmically by renormalization: ˜ • ˜ α ց − → peak structure reduced by quantum fluctuations. • ˜ ∆ ց − → closer to resonance; peak broadened by quantum fluct. g V -g T 0.1 g V/T 0.5 seq 0.04 g V/T 0.4 0.2 0 0 cot g V/T 0.3 -0.04 ∼ α g V/T 0.2 -0.1 0.1 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 ∼ ∆ 0.1 g V/T 0 n x 0 n x 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 (logarithmic reduction of maximum electrical conductance (K ¨ onig et al. PRL ’97) experimentally observed by Joyez et al. PRL ’97) COQUSY06 – p.15

  17. Thermopower Thermopower: V ,T V ,T L L R R � V = G T � S = − lim � δT G V δT → 0 � I =0 V g Thermoelectric transport: S measures average energy: I = G V V + G T δT S = −� ε � eT . COQUSY06 – p.16

  18. Charging energy gaps determine S 0 -1 1 ∆ n = E ch ( n + 1) − E ch ( n ) E ch (0) E C = E C [1 + 2( n − n x )] ∆ 0 E ch E ch (1) A) at resonance: • peak in G V E ch (-1) • S ∝ � ε � = 0 A 0.5 ε ≷ E F cancels ∆ B G V /G as 0 C B) sequential ∆ −1 • G V decays off resonance β E C /2 • S ∝ � ε � ∝ ∆ 0 ∝ n x ∆ 0 S/e 0 k B T ∆ C) n x = 0 ⇔ ∆ − 1 = − ∆ 0 −1 - β E C /2 • two levels add for G V -1 0 1 n x • two levels cancel for S COQUSY06 – p.17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend