concentration for coulomb gases
play

Concentration for Coulomb gases and Coulomb transport inequalities - PowerPoint PPT Presentation

Concentration for Coulomb gases Concentration for Coulomb gases and Coulomb transport inequalities Djalil Chafa 1 , Adrien Hardy 2 , Mylne Mada 2 1 Universit Paris-Dauphine, 2 Universit de Lille Probability and Analysis B edlewo


  1. Concentration for Coulomb gases Concentration for Coulomb gases and Coulomb transport inequalities Djalil Chafaï 1 , Adrien Hardy 2 , Mylène Maïda 2 1 Université Paris-Dauphine, 2 Université de Lille Probability and Analysis B˛ edlewo – May 18, 2017 1/24

  2. Concentration for Coulomb gases Motivation: concentration for Ginibre ensemble 1.0 0.5 0.0 −0.5 −1.0 −1.0 −0.5 0.0 0.5 1.0 plot(eig(randcg(500,500)/sqrt(500))) 2/24

  3. Concentration for Coulomb gases Electrostatics Outline Electrostatics Coulomb gas model Probability metrics and Coulomb transport inequality Concentration of measure for Coulomb gases 3/24

  4. Concentration for Coulomb gases Electrostatics Coulomb kernel in mathematical physics � Coulomb kernel in R d , d � 2,  log 1  if d = 2,   | x | x ∈ R d �→ g ( x ) = 1    if d ≥ 3 . | x | d − 2 4/24

  5. Concentration for Coulomb gases Electrostatics Coulomb kernel in mathematical physics � Coulomb kernel in R d , d � 2,  log 1  if d = 2,   | x | x ∈ R d �→ g ( x ) = 1    if d ≥ 3 . | x | d − 2 � Fundamental solution of Poisson’s equation � 2 π if d = 2 , ∆ g = − c d δ 0 c d = where ( d − 2 ) | S d − 1 | if d ≥ 3 . 4/24

  6. Concentration for Coulomb gases Electrostatics Coulomb energy and equilibrium measure � Coulomb energy of probability measure µ on R d : �� E ( µ ) = g ( x − y ) µ ( d x ) µ ( d y ) ∈ R ∪{ + ∞ } . 5/24

  7. Concentration for Coulomb gases Electrostatics Coulomb energy and equilibrium measure � Coulomb energy of probability measure µ on R d : �� E ( µ ) = g ( x − y ) µ ( d x ) µ ( d y ) ∈ R ∪{ + ∞ } . � Coulomb energy with confining potential (external field) � E V ( µ ) = E ( µ )+ V ( x ) µ ( d x ) . 5/24

  8. Concentration for Coulomb gases Electrostatics Coulomb energy and equilibrium measure � Coulomb energy of probability measure µ on R d : �� E ( µ ) = g ( x − y ) µ ( d x ) µ ( d y ) ∈ R ∪{ + ∞ } . � Coulomb energy with confining potential (external field) � E V ( µ ) = E ( µ )+ V ( x ) µ ( d x ) . � Equilibrium probability measure (electrostatics) µ V = arginf E V 5/24

  9. Concentration for Coulomb gases Electrostatics Coulomb energy and equilibrium measure � Coulomb energy of probability measure µ on R d : �� E ( µ ) = g ( x − y ) µ ( d x ) µ ( d y ) ∈ R ∪{ + ∞ } . � Coulomb energy with confining potential (external field) � E V ( µ ) = E ( µ )+ V ( x ) µ ( d x ) . � Equilibrium probability measure (electrostatics) µ V = arginf E V � If V is strong then µ V is compactly supported with density 1 ∆ V 2 c d 5/24

  10. Concentration for Coulomb gases Electrostatics Examples of equilibrium measures d g V µ V ∞ 1 interval c ( x ) 1 2 arcsine x 2 1 2 semicircle | x | 2 2 2 uniform on a disc � x � 2 � 3 d uniform on a ball � 2 d radial radial in a ring 6/24

  11. Concentration for Coulomb gases Coulomb gas model Outline Electrostatics Coulomb gas model Probability metrics and Coulomb transport inequality Concentration of measure for Coulomb gases 7/24

  12. Concentration for Coulomb gases Coulomb gas model Coulomb gas or one component plasma � Energy of N Coulomb charges in R d : N ∑ V ( x i )+ ∑ H N ( x 1 ,..., x N ) = N g ( x i − x j ) i = 1 i � = j 8/24

  13. Concentration for Coulomb gases Coulomb gas model Coulomb gas or one component plasma � Energy of N Coulomb charges in R d : H N ( x 1 ,..., x N ) = N 2 � � �� � V ( x ) µ N ( d x )+ g ( x − y ) µ N ( d x ) µ N ( d y ) x � = y � Empirical measure: µ N = 1 N ∑ N i = 1 δ x i 8/24

  14. Concentration for Coulomb gases Coulomb gas model Coulomb gas or one component plasma � Energy of N Coulomb charges in R d : H N ( x 1 ,..., x N ) = N 2 � � �� � V ( x ) µ N ( d x )+ g ( x − y ) µ N ( d x ) µ N ( d y ) x � = y � �� � E � = V ( µ N ) � Empirical measure: µ N = 1 N ∑ N i = 1 δ x i 8/24

  15. Concentration for Coulomb gases Coulomb gas model Coulomb gas or one component plasma � Energy of N Coulomb charges in R d : H N ( x 1 ,..., x N ) = N 2 � � �� � V ( x ) µ N ( d x )+ g ( x − y ) µ N ( d x ) µ N ( d y ) x � = y � �� � E � = V ( µ N ) � Empirical measure: µ N = 1 N ∑ N i = 1 δ x i � Boltzmann–Gibbs measure P N V , β on ( R d ) N : � � − β exp 2 H N ( x 1 ,..., x N ) Z V , β 8/24

  16. Concentration for Coulomb gases Coulomb gas model Coulomb gas or one component plasma � Energy of N Coulomb charges in R d : H N ( x 1 ,..., x N ) = N 2 � � �� � V ( x ) µ N ( d x )+ g ( x − y ) µ N ( d x ) µ N ( d y ) x � = y � �� � E � = V ( µ N ) � Empirical measure: µ N = 1 N ∑ N i = 1 δ x i � Boltzmann–Gibbs measure P N V , β on ( R d ) N : � � 2 N 2 E � = − β exp V ( µ N ) Z N V , β 8/24

  17. Concentration for Coulomb gases Coulomb gas model Coulomb gas or one component plasma � Energy of N Coulomb charges in R d : H N ( x 1 ,..., x N ) = N 2 � � �� � V ( x ) µ N ( d x )+ g ( x − y ) µ N ( d x ) µ N ( d y ) x � = y � �� � E � = V ( µ N ) � Empirical measure: µ N = 1 N ∑ N i = 1 δ x i � Boltzmann–Gibbs measure P N V , β on ( R d ) N : � � 2 N 2 E � = − β exp V ( µ N ) Z N V , β � V must be strong enough at infinity to ensure integrability 8/24

  18. Concentration for Coulomb gases Coulomb gas model Coulomb gas or one component plasma � Energy of N Coulomb charges in R d : H N ( x 1 ,..., x N ) = N 2 � � �� � V ( x ) µ N ( d x )+ g ( x − y ) µ N ( d x ) µ N ( d y ) x � = y � �� � E � = V ( µ N ) � Empirical measure: µ N = 1 N ∑ N i = 1 δ x i � Boltzmann–Gibbs measure P N V , β on ( R d ) N : � � 2 N 2 E � = − β exp V ( µ N ) Z N V , β � V must be strong enough at infinity to ensure integrability � P N , β is neither product nor log-concave 8/24

  19. Concentration for Coulomb gases Coulomb gas model Empirical measure and equilibrium measure � Random empirical measure under P N V , β : N µ N = 1 ∑ δ x i . N i = 1 9/24

  20. Concentration for Coulomb gases Coulomb gas model Empirical measure and equilibrium measure � Random empirical measure under P N V , β : N µ N = 1 ∑ δ x i . N i = 1 � Under mild assumptions on V , with probability one, µ N − N → ∞ µ V . → 9/24

  21. Concentration for Coulomb gases Coulomb gas model Empirical measure and equilibrium measure � Random empirical measure under P N V , β : N µ N = 1 ∑ δ x i . N i = 1 � Under mild assumptions on V , with probability one, µ N − N → ∞ µ V . → � Large Deviation Principle (Gozlan-C.-Zitt 2014) � � log P N dist ( µ N , µ V ) ≥ r � � N → ∞ − β V , β − → inf E V ( µ ) − E V ( µ V ) . N 2 2 dist ( µ , µ V ) ≥ r 9/24

  22. Concentration for Coulomb gases Coulomb gas model Empirical measure and equilibrium measure � Random empirical measure under P N V , β : N µ N = 1 ∑ δ x i . N i = 1 � Under mild assumptions on V , with probability one, µ N − N → ∞ µ V . → � Large Deviation Principle (Gozlan-C.-Zitt 2014) � � log P N dist ( µ N , µ V ) ≥ r � � N → ∞ − β V , β − → inf E V ( µ ) − E V ( µ V ) . N 2 2 dist ( µ , µ V ) ≥ r � Quantitative estimates? How to relate dist and E V ( · ) − E V ( µ V ) ? 9/24

  23. Concentration for Coulomb gases Probability metrics and Coulomb transport inequality Outline Electrostatics Coulomb gas model Probability metrics and Coulomb transport inequality Concentration of measure for Coulomb gases 10/24

  24. Concentration for Coulomb gases Probability metrics and Coulomb transport inequality Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ V ) 11/24

  25. Concentration for Coulomb gases Probability metrics and Coulomb transport inequality Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ V ) � Coulomb metric � E ( µ − ν ) 11/24

  26. Concentration for Coulomb gases Probability metrics and Coulomb transport inequality Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ V ) � Coulomb metric � E ( µ − ν ) � Bounded-Lipschitz or Fortet–Mourier distance � d BL ( µ , ν ) = sup f ( x )( µ − ν )( d x ) , � f � Lip � 1 � f � ∞ � 1 11/24

  27. Concentration for Coulomb gases Probability metrics and Coulomb transport inequality Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ V ) � Coulomb metric � E ( µ − ν ) � Bounded-Lipschitz or Fortet–Mourier distance � d BL ( µ , ν ) = sup f ( x )( µ − ν )( d x ) , � f � Lip � 1 � f � ∞ � 1 � (Monge-Kantorovich-)Wasserstein distance E ( | X − Y | p ) 1 / p . W p ( µ , ν ) = inf ( X , Y ) X ∼ µ , Y ∼ ν 11/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend