dynamics of a planar coulomb gas
play

Dynamics of a planar Coulomb gas Djalil C HAFA Universit - PowerPoint PPT Presentation

Dynamics of a planar Coulomb gas Dynamics of a planar Coulomb gas Djalil C HAFA Universit Paris-Dauphine Workshop on Optimal and Random Point Configurations February 26, 2018 ICERM, Brown University 1/26 Dynamics of a planar Coulomb


  1. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Brascamp–Lieb 1976) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ą 0 on R d , then for any smooth f : R d Ñ R , Z Var µ p f q ď E µ xp ∇ 2 H q ´ 1 ∇ f , ∇ f y � Proof by induction on dimension d � Ornstein–Uhlenbeck: ∇ 2 H “ I d � Convexity: ∇ 2 H ě ρ I d ą 0 gives Poincaré with 1 { ρ � H convex means that µ p d x q “ e ´ H d x is log-concave 8/26

  2. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Brascamp–Lieb 1976) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ą 0 on R d , then for any smooth f : R d Ñ R , Z Var µ p f q ď E µ xp ∇ 2 H q ´ 1 ∇ f , ∇ f y � Proof by induction on dimension d � Ornstein–Uhlenbeck: ∇ 2 H “ I d � Convexity: ∇ 2 H ě ρ I d ą 0 gives Poincaré with 1 { ρ � H convex means that µ p d x q “ e ´ H d x is log-concave � Jensen divergence: Var µ p f q “ E µ Φ p f q´ Φ p E µ f q , Φ p u q “ u 2 8/26

  3. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Bakry–Émery 1984) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then for any convex Φ : I Ñ R Z with p u , v q ÞÑ Φ 2 p u q v 2 convex and any smooth f : R d Ñ I E µ Φ p f q´ Φ p E µ f q ď E µ p Φ 2 p f q| ∇ f | 2 q ρ 9/26

  4. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Bakry–Émery 1984) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then for any convex Φ : I Ñ R Z with p u , v q ÞÑ Φ 2 p u q v 2 convex and any smooth f : R d Ñ I E µ Φ p f q´ Φ p E µ f q ď E µ p Φ 2 p f q| ∇ f | 2 q ρ � Proof by semigroup interpolation e p t ´ s q G p Φ p e sG f qq , e tG f “ E f p X t q 9/26

  5. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Bakry–Émery 1984) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then for any convex Φ : I Ñ R Z with p u , v q ÞÑ Φ 2 p u q v 2 convex and any smooth f : R d Ñ I E µ Φ p f q´ Φ p E µ f q ď E µ p Φ 2 p f q| ∇ f | 2 q ρ � Proof by semigroup interpolation e p t ´ s q G p Φ p e sG f qq , e tG f “ E f p X t q � Ornstein–Uhlenbeck: ∇ 2 H “ I d 9/26

  6. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Bakry–Émery 1984) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then for any convex Φ : I Ñ R Z with p u , v q ÞÑ Φ 2 p u q v 2 convex and any smooth f : R d Ñ I E µ Φ p f q´ Φ p E µ f q ď E µ p Φ 2 p f q| ∇ f | 2 q ρ � Proof by semigroup interpolation e p t ´ s q G p Φ p e sG f qq , e tG f “ E f p X t q � Ornstein–Uhlenbeck: ∇ 2 H “ I d � Poincaré: I “ R , Φ p u q “ u 2 9/26

  7. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Bakry–Émery 1984) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then for any convex Φ : I Ñ R Z with p u , v q ÞÑ Φ 2 p u q v 2 convex and any smooth f : R d Ñ I E µ Φ p f q´ Φ p E µ f q ď E µ p Φ 2 p f q| ∇ f | 2 q ρ � Proof by semigroup interpolation e p t ´ s q G p Φ p e sG f qq , e tG f “ E f p X t q � Ornstein–Uhlenbeck: ∇ 2 H “ I d � Poincaré: I “ R , Φ p u q “ u 2 � Beckner: I “ R ` , Φ p u q “ u p , 1 ă p ď 2 9/26

  8. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Bakry–Émery 1984) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then for any convex Φ : I Ñ R Z with p u , v q ÞÑ Φ 2 p u q v 2 convex and any smooth f : R d Ñ I E µ Φ p f q´ Φ p E µ f q ď E µ p Φ 2 p f q| ∇ f | 2 q ρ � Proof by semigroup interpolation e p t ´ s q G p Φ p e sG f qq , e tG f “ E f p X t q � Ornstein–Uhlenbeck: ∇ 2 H “ I d � Poincaré: I “ R , Φ p u q “ u 2 � Beckner: I “ R ` , Φ p u q “ u p , 1 ă p ď 2 � Logarithmic Sobolev: I “ R ` , Φ p u q “ u log p u q 9/26

  9. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Caffarelli 2000) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then µ is the image of N p 0 , I d q Z by a Lipschitz function F : R d Ñ R d with } F } Lip ď 1 ? ρ . 10/26

  10. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Caffarelli 2000) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then µ is the image of N p 0 , I d q Z by a Lipschitz function F : R d Ñ R d with } F } Lip ď 1 ? ρ . � Proof by Monge–Ampère equation: f “ det p DF q g 10/26

  11. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Caffarelli 2000) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then µ is the image of N p 0 , I d q Z by a Lipschitz function F : R d Ñ R d with } F } Lip ď 1 ? ρ . � Proof by Monge–Ampère equation: f “ det p DF q g � Gives Poincaré from the Gaussian by transportation: Var µ p f q “ Var N p 0 , I d q p f p F qq ď E N p 0 , I d q p| ∇ f p F qq| 2 q ď E µ p| ∇ f | 2 q ρ 10/26

  12. Dynamics of a planar Coulomb gas Poincaré inequality Comparison to Gaussianity via convexity Theorem (Caffarelli 2000) If µ p d x q “ e ´ H p x q d x, ∇ 2 H ě ρ I d ą 0 , then µ is the image of N p 0 , I d q Z by a Lipschitz function F : R d Ñ R d with } F } Lip ď 1 ? ρ . � Proof by Monge–Ampère equation: f “ det p DF q g � Gives Poincaré from the Gaussian by transportation: Var µ p f q “ Var N p 0 , I d q p f p F qq ď E N p 0 , I d q p| ∇ f p F qq| 2 q ď E µ p| ∇ f | 2 q ρ � Gives also any Φ -Sobolev inequality from the Gaussian! 10/26

  13. Dynamics of a planar Coulomb gas Poincaré inequality KLS conjecture Conjecture (Kannan–Lovász–Simonovits 1995) There exists a universal constant C ą 0 such that for any dimension d ě 1 and any smooth H : R d Ñ R with ∇ 2 H ě 0 and Cov “ I d , µ p d x q “ e ´ H p x q d x satisfies to a Poincaré inequality with constant C. Z � . . . 11/26

  14. Dynamics of a planar Coulomb gas Poincaré inequality KLS conjecture Conjecture (Kannan–Lovász–Simonovits 1995) There exists a universal constant C ą 0 such that for any dimension d ě 1 and any smooth H : R d Ñ R with ∇ 2 H ě 0 and Cov “ I d , µ p d x q “ e ´ H p x q d x satisfies to a Poincaré inequality with constant C. Z � . . . � KLS/Bobkov true with d 1 { 2 11/26

  15. Dynamics of a planar Coulomb gas Poincaré inequality KLS conjecture Conjecture (Kannan–Lovász–Simonovits 1995) There exists a universal constant C ą 0 such that for any dimension d ě 1 and any smooth H : R d Ñ R with ∇ 2 H ě 0 and Cov “ I d , µ p d x q “ e ´ H p x q d x satisfies to a Poincaré inequality with constant C. Z � . . . � KLS/Bobkov true with d 1 { 2 � . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . . 11/26

  16. Dynamics of a planar Coulomb gas Poincaré inequality KLS conjecture Conjecture (Kannan–Lovász–Simonovits 1995) There exists a universal constant C ą 0 such that for any dimension d ě 1 and any smooth H : R d Ñ R with ∇ 2 H ě 0 and Cov “ I d , µ p d x q “ e ´ H p x q d x satisfies to a Poincaré inequality with constant C. Z � . . . � KLS/Bobkov true with d 1 { 2 � . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . . � Lee–Vempala 2016: true with d 1 { 4 11/26

  17. Dynamics of a planar Coulomb gas Poincaré inequality KLS conjecture Conjecture (Kannan–Lovász–Simonovits 1995) There exists a universal constant C ą 0 such that for any dimension d ě 1 and any smooth H : R d Ñ R with ∇ 2 H ě 0 and Cov “ I d , µ p d x q “ e ´ H p x q d x satisfies to a Poincaré inequality with constant C. Z � . . . � KLS/Bobkov true with d 1 { 2 � . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . . � Lee–Vempala 2016: true with d 1 { 4 � . . . 11/26

  18. Dynamics of a planar Coulomb gas Dyson Process Outline Poincaré inequality Dyson Process Ginibre process 12/26

  19. Dynamics of a planar Coulomb gas Dyson Process Gaussian Hermitian Random Matrices “ R n 2 “ R d � Herm n ˆ n ” R n ` 2 n 2 ´ n 2 13/26

  20. Dynamics of a planar Coulomb gas Dyson Process Gaussian Hermitian Random Matrices “ R n 2 “ R d � Herm n ˆ n ” R n ` 2 n 2 ´ n 2 � Boltzmann–Gibbs measure 2 Tr p M 2 q µ p d M q “ e ´ n d M Z 13/26

  21. Dynamics of a planar Coulomb gas Dyson Process Gaussian Hermitian Random Matrices “ R n 2 “ R d � Herm n ˆ n ” R n ` 2 n 2 ´ n 2 � Boltzmann–Gibbs measure 2 Tr p M 2 q µ p d M q “ e ´ n d M Z � Stochastic Differential Equation à la Ornstein–Uhlenbeck d M t “ ´ nM t d t ` d B t . 13/26

  22. Dynamics of a planar Coulomb gas Dyson Process Gaussian Hermitian Random Matrices “ R n 2 “ R d � Herm n ˆ n ” R n ` 2 n 2 ´ n 2 � Boltzmann–Gibbs measure 2 Tr p M 2 q µ p d M q “ e ´ n d M Z � Stochastic Differential Equation à la Ornstein–Uhlenbeck d M t “ ´ α n nM t d t `? α n d B t . 13/26

  23. Dynamics of a planar Coulomb gas Dyson Process Gaussian Hermitian Random Matrices “ R n 2 “ R d � Herm n ˆ n ” R n ` 2 n 2 ´ n 2 � Boltzmann–Gibbs measure 2 Tr p M 2 q µ p d M q “ e ´ n d M Z � Stochastic Differential Equation à la Ornstein–Uhlenbeck d M t “ ´ M t d t ` d B t ? n . 13/26

  24. Dynamics of a planar Coulomb gas Dyson Process Gaussian Hermitian Random Matrices “ R n 2 “ R d � Herm n ˆ n ” R n ` 2 n 2 ´ n 2 � Boltzmann–Gibbs measure 2 Tr p M 2 q µ p d M q “ e ´ n d M Z � Stochastic Differential Equation à la Ornstein–Uhlenbeck d M t “ ´ M t d t ` d B t ? n . � Change of variable: if spec p M q “ t x 1 ,..., x n u , M “ UDU ˚ with D “ diag p x 1 ,..., x n q 13/26

  25. Dynamics of a planar Coulomb gas Dyson Process Gaussian Hermitian Random Matrices “ R n 2 “ R d � Herm n ˆ n ” R n ` 2 n 2 ´ n 2 � Boltzmann–Gibbs measure 2 Tr p M 2 q µ p d M q “ e ´ n d M Z � Stochastic Differential Equation à la Ornstein–Uhlenbeck d M t “ ´ M t d t ` d B t ? n . � Change of variable: if spec p M q “ t x 1 ,..., x n u , M “ UDU ˚ with D “ diag p x 1 ,..., x n q � Stochastic process of spectrum? 13/26

  26. Dynamics of a planar Coulomb gas Dyson Process Gaussian Unitary Ensemble and Dyson Process � State space D “ tp x 1 ,..., x n q P R n : x 1 ă ¨¨¨ ă x n u 14/26

  27. Dynamics of a planar Coulomb gas Dyson Process Gaussian Unitary Ensemble and Dyson Process � State space D “ tp x 1 ,..., x n q P R n : x 1 ă ¨¨¨ ă x n u � Boltzmann–Gibbs measure via change of variable ř n i ś i “ 1 x 2 e ´ n i ă j p x j ´ x i q 2 2 µ p d x q “ d x Z 14/26

  28. Dynamics of a planar Coulomb gas Dyson Process Gaussian Unitary Ensemble and Dyson Process � State space D “ tp x 1 ,..., x n q P R n : x 1 ă ¨¨¨ ă x n u � Boltzmann–Gibbs measure via change of variable ř n i ´ 2 ř i “ 1 x 2 1 ´ n i ă j log 2 xj ´ xi µ p d x q “ e d x Z 14/26

  29. Dynamics of a planar Coulomb gas Dyson Process Gaussian Unitary Ensemble and Dyson Process � State space D “ tp x 1 ,..., x n q P R n : x 1 ă ¨¨¨ ă x n u � Boltzmann–Gibbs measure via change of variable ř n i ´ 2 ř i “ 1 x 2 1 ´ n i ă j log 2 xj ´ xi µ p d x q “ e d x Z � Dyson Ornstein–Uhlenbeck process via Itô formula ˆ ˙ ÿ t ` 2 1 dt ` d B i t d X i X i t “ ´ ? X j n t ´ X i n i ă j t 14/26

  30. Dynamics of a planar Coulomb gas Dyson Process Gaussian Unitary Ensemble and Dyson Process � State space D “ tp x 1 ,..., x n q P R n : x 1 ă ¨¨¨ ă x n u � Boltzmann–Gibbs measure via change of variable ř n i ´ 2 ř i “ 1 x 2 1 ´ n i ă j log 2 xj ´ xi µ p d x q “ e d x Z � Dyson Ornstein–Uhlenbeck process via Itô formula ˆ ˙ ÿ t ` 2 1 dt ` d B i t d X i X i t “ ´ ? X j n t ´ X i n i ă j t � Well-posedness: . . . , Rogers–Shi, . . . 14/26

  31. Dynamics of a planar Coulomb gas Dyson Process Gaussian Unitary Ensemble and Dyson Process � State space D “ tp x 1 ,..., x n q P R n : x 1 ă ¨¨¨ ă x n u � Boltzmann–Gibbs measure via change of variable ř n i ´ 2 ř i “ 1 x 2 1 ´ n i ă j log 2 xj ´ xi µ p d x q “ e d x Z � Dyson Ornstein–Uhlenbeck process via Itô formula ˆ ˙ ÿ t ` 2 1 dt ` d B i t d X i X i t “ ´ ? X j n t ´ X i n i ă j t � Well-posedness: . . . , Rogers–Shi, . . . � Poincaré and log-Sobolev: . . . , Erd˝ os–Yau et al, . . . 14/26

  32. Dynamics of a planar Coulomb gas Dyson Process James Dyson (1947 –) 15/26

  33. Dynamics of a planar Coulomb gas Dyson Process Freeman Dyson (1923 –) 15/26

  34. Dynamics of a planar Coulomb gas Dyson Process Freeman Dyson (1923 –) � Freeman Dyson A Brownian-motion model for the eigenvalues of a random matrix Journal of Mathematical Physics 3 (1962) 1191–1198. 15/26

  35. Dynamics of a planar Coulomb gas Dyson Process Freeman Dyson (1923 –) � Freeman Dyson A Brownian-motion model for the eigenvalues of a random matrix Journal of Mathematical Physics 3 (1962) 1191–1198. � Greg Anderson & Alice Guionnet & Ofer Zeitouni An introduction to random matrices (CUP 2009) 15/26

  36. Dynamics of a planar Coulomb gas Dyson Process Freeman Dyson (1923 –) � Freeman Dyson A Brownian-motion model for the eigenvalues of a random matrix Journal of Mathematical Physics 3 (1962) 1191–1198. � Greg Anderson & Alice Guionnet & Ofer Zeitouni An introduction to random matrices (CUP 2009) � László Erd˝ os & Horng-Tzer Yau Dynamical Approach To Random Matrix Theory (AMS 2017) 15/26

  37. Dynamics of a planar Coulomb gas Dyson Process Optimal Poincaré constant (mind the gap!) � Boltzmann–Gibbs measure ÿ n ÿ µ p d x q “ e ´ H p x q 1 H p x q “ n x 2 with i ` 2 d x log 2 x j ´ x i Z i “ 1 i ă j 16/26

  38. Dynamics of a planar Coulomb gas Dyson Process Optimal Poincaré constant (mind the gap!) � Boltzmann–Gibbs measure ÿ n ÿ µ p d x q “ e ´ H p x q 1 H p x q “ n x 2 with i ` 2 d x log 2 x j ´ x i Z i “ 1 i ă j � Log-concavity ∇ 2 H p x q ě n . 16/26

  39. Dynamics of a planar Coulomb gas Dyson Process Optimal Poincaré constant (mind the gap!) � Boltzmann–Gibbs measure ÿ n ÿ µ p d x q “ e ´ H p x q 1 H p x q “ n x 2 with i ` 2 d x log 2 x j ´ x i Z i “ 1 i ă j � Log-concavity ∇ 2 H p x q ě n . � Brascamp–Lieb or Bakry–Émery or Caffarelli Var µ p f q ď E µ p| ∇ f | 2 q . n 16/26

  40. Dynamics of a planar Coulomb gas Dyson Process Optimal Poincaré constant (mind the gap!) � Boltzmann–Gibbs measure ÿ n ÿ µ p d x q “ e ´ H p x q 1 H p x q “ n x 2 with i ` 2 d x log 2 x j ´ x i Z i “ 1 i ă j � Log-concavity ∇ 2 H p x q ě n . � Brascamp–Lieb or Bakry–Émery or Caffarelli Var µ p f q ď E µ p| ∇ f | 2 q . n � Equality achieved for f p x q “ x 1 `¨¨¨` x n (compute traces) 16/26

  41. Dynamics of a planar Coulomb gas Dyson Process Optimal Poincaré constant (mind the gap!) � Boltzmann–Gibbs measure ÿ n ÿ µ p d x q “ e ´ H p x q 1 H p x q “ n x 2 with i ` 2 d x log 2 x j ´ x i Z i “ 1 i ă j � Log-concavity ∇ 2 H p x q ě n . � Brascamp–Lieb or Bakry–Émery or Caffarelli Var µ p f q ď E µ p| ∇ f | 2 q . n � Equality achieved for f p x q “ x 1 `¨¨¨` x n (compute traces) � Lipschitz deformation of Gaussian (Hoffman–Wielandt) 16/26

  42. Dynamics of a planar Coulomb gas Ginibre process Outline Poincaré inequality Dyson Process Ginibre process 17/26

  43. Dynamics of a planar Coulomb gas Ginibre process Ginibre process � Boltzmann–Gibbs measure on Mat n ˆ n p C q µ p M q “ e ´ n Tr p MM ˚ q d M Z 18/26

  44. Dynamics of a planar Coulomb gas Ginibre process Ginibre process � Boltzmann–Gibbs measure on Mat n ˆ n p C q µ p M q “ e ´ n Tr p MM ˚ q d M Z � Schur unitary decomposition: if t x 1 ,..., x n u “ spec p M q , M “ UTU ˚ with and T “ D ` N D “ diag p x 1 ,..., x n q . 18/26

  45. Dynamics of a planar Coulomb gas Ginibre process Ginibre process � Boltzmann–Gibbs measure on Mat n ˆ n p C q µ p M q “ e ´ n Tr p MM ˚ q d M Z � Schur unitary decomposition: if t x 1 ,..., x n u “ spec p M q , M “ UTU ˚ with and T “ D ` N D “ diag p x 1 ,..., x n q . � Lack of normality is generic: µ pt N “ 0 uq “ 0 18/26

  46. Dynamics of a planar Coulomb gas Ginibre process Ginibre process � Boltzmann–Gibbs measure on Mat n ˆ n p C q µ p M q “ e ´ n Tr p MM ˚ q d M Z � Schur unitary decomposition: if t x 1 ,..., x n u “ spec p M q , M “ UTU ˚ with and T “ D ` N D “ diag p x 1 ,..., x n q . � Lack of normality is generic: µ pt N “ 0 uq “ 0 � Process on spectrum melts N and D ( Ñ Bourgade–Dubach) 18/26

  47. Dynamics of a planar Coulomb gas Ginibre process Ginibre process � Boltzmann–Gibbs measure on Mat n ˆ n p C q µ p M q “ e ´ n Tr p MM ˚ q d M Z � Schur unitary decomposition: if t x 1 ,..., x n u “ spec p M q , M “ UTU ˚ with and T “ D ` N D “ diag p x 1 ,..., x n q . � Lack of normality is generic: µ pt N “ 0 uq “ 0 � Process on spectrum melts N and D ( Ñ Bourgade–Dubach) � How about an O.-U. like diffusion leaving invariant µ ? 18/26

  48. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u 19/26

  49. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u � Boltzmann–Gibbs measure via change of variable µ p d x q “ e ´ n ř n i “ 1 | x i | 2 ź | x i ´ x j | 2 d x Z i ă j 19/26

  50. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u � Boltzmann–Gibbs measure via change of variable ´ n ř n i “ 1 | x i | 2 ´ 2 ř 1 i ă j log | xi ´ xj | µ p d x q “ e d x Z 19/26

  51. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u � Boltzmann–Gibbs measure via change of variable ´ n ř n i “ 1 | x i | 2 ´ 2 ř 1 i ă j log | xi ´ xj | µ p d x q “ e d x Z � Ginibre process on C n “ p R 2 q n ÿ X j t d t ´ 2 t ´ X i t | 2 d t ` d B i t t d X i t “ ´ 2 X i ? n . t ´ X j n | X i i ‰ j 19/26

  52. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u � Boltzmann–Gibbs measure via change of variable ´ ¯ ř n ř 1 i “ 1 | x i | 2 ` 1 1 ´ β n i ă j log n 2 n | xi ´ xj | µ p d x q “ e d x Z � Ginibre process on C n “ p R 2 q n c α n ÿ X j t ´ X i t “ ´ 2 α n t d t ´ 2 α n d X i n X i t d B i t | 2 d t ` t . t ´ X j n | X i β n j ‰ i 19/26

  53. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u � Boltzmann–Gibbs measure via change of variable ´ ¯ ř n ř 1 i “ 1 | x i | 2 ` 1 1 ´ β n i ă j log n 2 n | xi ´ xj | µ p d x q “ e d x Z � Ginibre process on C n “ p R 2 q n c α n ÿ X j t ´ X i t “ ´ 2 α n t d t ´ 2 α n d X i n X i t d B i t | 2 d t ` t . t ´ X j n | X i β n j ‰ i � RMT: β n “ n 2 19/26

  54. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u � Boltzmann–Gibbs measure via change of variable ´ ¯ ř n ř 1 i “ 1 | x i | 2 ` 1 1 ´ β n i ă j log n 2 n | xi ´ xj | µ p d x q “ e d x Z � Ginibre process on C n “ p R 2 q n c α n ÿ X j t ´ X i t “ ´ 2 α n t d t ´ 2 α n d X i n X i t d B i t | 2 d t ` t . t ´ X j n | X i β n j ‰ i � RMT: β n “ n 2 � No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli 19/26

  55. Dynamics of a planar Coulomb gas Ginibre process � State space D “ C n zY i ‰ j tp x 1 ,..., x n q P C n : x i “ x j u � Boltzmann–Gibbs measure via change of variable ´ ¯ ř n ř 1 i “ 1 | x i | 2 ` 1 1 ´ β n i ă j log n 2 n | xi ´ xj | µ p d x q “ e d x Z � Ginibre process on C n “ p R 2 q n c α n ÿ X j t ´ X i t “ ´ 2 α n t d t ´ 2 α n d X i n X i t d B i t | 2 d t ` t . t ´ X j n | X i β n j ‰ i � RMT: β n “ n 2 � No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli � No Hoffman–Wielandt for non-normal matrices 19/26

  56. Dynamics of a planar Coulomb gas Ginibre process Well posedness � Explosion time T B D “ lim R Ñ8 T R where T R “ inf t t ě 0 : H p X t q ą R u 20/26

  57. Dynamics of a planar Coulomb gas Ginibre process Well posedness � Explosion time T B D “ lim R Ñ8 T R where T R “ inf t t ě 0 : dist p X t , B D q ď 1 { R u 20/26

  58. Dynamics of a planar Coulomb gas Ginibre process Well posedness � Explosion time T B D “ lim R Ñ8 T R where " * t ´ X j | X i i ‰ j | X i t ě 0 : max t | ě R or min t | ď 1 { R T R “ inf i 20/26

  59. Dynamics of a planar Coulomb gas Ginibre process Well posedness Theorem (Well-posedness) For all X 0 “ x P D, n ě 2 , β n ą 0 , we have P p T B D “ `8q “ 1 . 20/26

  60. Dynamics of a planar Coulomb gas Ginibre process Well posedness Theorem (Well-posedness) For all X 0 “ x P D, n ě 2 , β n ą 0 , we have P p T B D “ `8q “ 1 . � No constraint on β in contrast with Rogers–Shi for Dyson O.–U. ! 20/26

  61. Dynamics of a planar Coulomb gas Ginibre process Well posedness Theorem (Well-posedness) For all X 0 “ x P D, n ě 2 , β n ą 0 , we have P p T B D “ `8q “ 1 . � No constraint on β in contrast with Rogers–Shi for Dyson O.–U. ! � Positivity and coercivity x P D H p x q ą 0 and inf x ÑB D H p x q “ `8 lim 20/26

  62. Dynamics of a planar Coulomb gas Ginibre process Well posedness Theorem (Well-posedness) For all X 0 “ x P D, n ě 2 , β n ą 0 , we have P p T B D “ `8q “ 1 . � No constraint on β in contrast with Rogers–Shi for Dyson O.–U. ! � Positivity and coercivity x P D H p x q ą 0 and inf x ÑB D H p x q “ `8 lim � Cutoff W p x q “ r W p x q on | x | ă R with r W smooth 20/26

  63. Dynamics of a planar Coulomb gas Ginibre process Well posedness Theorem (Well-posedness) For all X 0 “ x P D, n ě 2 , β n ą 0 , we have P p T B D “ `8q “ 1 . � No constraint on β in contrast with Rogers–Shi for Dyson O.–U. ! � Positivity and coercivity x P D H p x q ą 0 and inf x ÑB D H p x q “ `8 lim � Cutoff W p x q “ r W p x q on | x | ă R with r W smooth � Itô formula ˆż t ^ T ˙ E x p H p X t ^ T qq´ H p x q “ E x GH p X s q d s . 0 20/26

  64. Dynamics of a planar Coulomb gas Ginibre process Well posedness Theorem (Well-posedness) For all X 0 “ x P D, n ě 2 , β n ą 0 , we have P p T B D “ `8q “ 1 . � No constraint on β in contrast with Rogers–Shi for Dyson O.–U. ! � Positivity and coercivity x P D H p x q ą 0 and inf x ÑB D H p x q “ `8 lim � Cutoff W p x q “ r W p x q on | x | ă R with r W smooth � Itô formula ˆż t ^ T ˙ E x p H p X t ^ T qq´ H p x q “ E x GH p X s q d s . 0 � R 1 T R ď t ď H p X t ^ T R q and GH ď c n on D 20/26

  65. Dynamics of a planar Coulomb gas Ginibre process Poincaré inequality Theorem (Poincaré inequality) For any n, the law µ n satisfies a Poincaré inequality. 21/26

  66. Dynamics of a planar Coulomb gas Ginibre process Poincaré inequality Theorem (Poincaré inequality) For any n, the law µ n satisfies a Poincaré inequality. � Proof using Lyapunov criterion 21/26

  67. Dynamics of a planar Coulomb gas Ginibre process Poincaré inequality Theorem (Poincaré inequality) For any n, the law µ n satisfies a Poincaré inequality. � Proof using Lyapunov criterion � Bakry–Barthe–Cattiaux–Guillin Lyapunov approach ÿ n ÿ H p x q “ 1 | x i | 2 ` 1 1 log n 2 | x i ´ x j | n i “ 1 j ‰ i Gf “ α n ∆ f ´ α n ∇ H ¨ ∇ f β n 21/26

  68. Dynamics of a planar Coulomb gas Ginibre process Poincaré inequality Theorem (Poincaré inequality) For any n, the law µ n satisfies a Poincaré inequality. � Proof using Lyapunov criterion � Bakry–Barthe–Cattiaux–Guillin Lyapunov approach ÿ n ÿ H p x q “ 1 | x i | 2 ` 1 1 log n 2 | x i ´ x j | n i “ 1 j ‰ i Gf “ α n ∆ f ´ α n ∇ H ¨ ∇ f β n G Ψ ď ´ c Ψ ` c 1 1 K 21/26

  69. Dynamics of a planar Coulomb gas Ginibre process Poincaré inequality Theorem (Poincaré inequality) For any n, the law µ n satisfies a Poincaré inequality. � Proof using Lyapunov criterion � Bakry–Barthe–Cattiaux–Guillin Lyapunov approach ÿ n ÿ H p x q “ 1 | x i | 2 ` 1 1 log n 2 | x i ´ x j | n i “ 1 j ‰ i Gf “ α n ∆ f ´ α n ∇ H ¨ ∇ f β n G Ψ ď ´ c Ψ ` c 1 1 K Ψ “ e γ H 21/26

  70. Dynamics of a planar Coulomb gas Ginibre process Poincaré inequality Theorem (Poincaré inequality) For any n, the law µ n satisfies a Poincaré inequality. � Proof using Lyapunov criterion � Bakry–Barthe–Cattiaux–Guillin Lyapunov approach ÿ n ÿ H p x q “ 1 | x i | 2 ` 1 1 log n 2 | x i ´ x j | n i “ 1 j ‰ i Gf “ α n ∆ f ´ α n ∇ H ¨ ∇ f β n G Ψ ď ´ c Ψ ` c 1 1 K Ψ “ e γ H 21/26

  71. Dynamics of a planar Coulomb gas Ginibre process Uniform Poincaré for the one particle marginal Theorem (Uniform Poincaré for one-particle) If β n “ n 2 then the one-particle marginal of µ is log-concave and satisfies a Poincaré inequality with a constant uniform in n. 22/26

  72. Dynamics of a planar Coulomb gas Ginibre process Uniform Poincaré for the one particle marginal Theorem (Uniform Poincaré for one-particle) If β n “ n 2 then the one-particle marginal of µ is log-concave and satisfies a Poincaré inequality with a constant uniform in n. � If β n “ n 2 then one particle marginal of µ has density z P C ÞÑ ϕ p z q “ e ´ n | z | 2 n ´ 1 n ℓ | z | 2 ℓ ÿ . π ℓ ! ℓ “ 0 22/26

  73. Dynamics of a planar Coulomb gas Ginibre process Uniform Poincaré for the one particle marginal Theorem (Uniform Poincaré for one-particle) If β n “ n 2 then the one-particle marginal of µ is log-concave and satisfies a Poincaré inequality with a constant uniform in n. � If β n “ n 2 then one particle marginal of µ has density z P C ÞÑ ϕ p z q “ e ´ n | z | 2 n ´ 1 n ℓ | z | 2 ℓ ÿ . π ℓ ! ℓ “ 0 � Circular law ˇ ˇ ˇ ˇ 1 t| z |ď 1 u ˇ ˇ ˇ “ 0 . n Ñ8 sup lim ˇ ϕ p z q´ π z P K 22/26

  74. Dynamics of a planar Coulomb gas Ginibre process Uniform Poincaré for the one particle marginal Theorem (Uniform Poincaré for one-particle) If β n “ n 2 then the one-particle marginal of µ is log-concave and satisfies a Poincaré inequality with a constant uniform in n. � If β n “ n 2 then one particle marginal of µ has density z P C ÞÑ ϕ p z q “ e ´ n | z | 2 n ´ 1 n ℓ | z | 2 ℓ ÿ . π ℓ ! ℓ “ 0 � Circular law ˇ ˇ ˇ ˇ 1 t| z |ď 1 u ˇ ˇ ˇ “ 0 . n Ñ8 sup lim ˇ ϕ p z q´ π z P K � The function z ÞÑ log ř n ´ 1 | z | 2 ℓ is concave! ℓ “ 0 ℓ ! 22/26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend