dynamics of a planar coulomb gas
play

Dynamics of a planar Coulomb gas F . Bolley, D. Chafa , J. - PowerPoint PPT Presentation

Dynamics of a planar Coulomb gas Dynamics of a planar Coulomb gas F . Bolley, D. Chafa , J. Fontbona Jussieu, Dauphine, Santiago Optimal Point Configurations and Orthogonal Polynomials April 1922, 2017 Castro Urdiales, Cantabria,


  1. Dynamics of a planar Coulomb gas Dynamics of a planar Coulomb gas F . Bolley, D. Chafa¨ ı, J. Fontbona Jussieu, Dauphine, Santiago Optimal Point Configurations and Orthogonal Polynomials April 19–22, 2017 Castro Urdiales, Cantabria, Spain 1/20

  2. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Outline Poincar´ e for diffusions Dyson Process Ginibre process 2/20

  3. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Diffusions � Markov process p X t q t ě 0 Stochastic Differential Equation ? d X t “ 2 d B t ´ ∇ H p X t q d t 3/20

  4. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Diffusions � Markov process p X t q t ě 0 Stochastic Differential Equation ? d X t “ 2 d B t ´ ∇ H p X t q d t � Energy H : x P R d ÞÑ H p x q P R with e ´ H P L 1 p dx q 3/20

  5. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Diffusions � Markov process p X t q t ě 0 Stochastic Differential Equation ? d X t “ 2 d B t ´ ∇ H p X t q d t � Energy H : x P R d ÞÑ H p x q P R with e ´ H P L 1 p dx q � Non-explosion: if ∇ 2 H ě c P R 3/20

  6. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Diffusions � Markov process p X t q t ě 0 Stochastic Differential Equation ? d X t “ 2 d B t ´ ∇ H p X t q d t � Energy H : x P R d ÞÑ H p x q P R with e ´ H P L 1 p dx q � Non-explosion: if ∇ 2 H ě c P R � Reversible (and thus invariant) Boltzmann-Gibbs measure µ p d x q “ e ´ H p x q d x Z p X 0 , X t q d X 0 „ µ ñ “ p X t , X 0 q @ t ě 0 3/20

  7. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Diffusions � Markov process p X t q t ě 0 Stochastic Differential Equation ? d X t “ 2 α d B t ´ α ∇ H p X t q d t � Energy H : x P R d ÞÑ H p x q P R with e ´ H P L 1 p dx q � Non-explosion: if ∇ 2 H ě c P R � Reversible (and thus invariant) Boltzmann-Gibbs measure µ p d x q “ e ´ H p x q d x Z p X 0 , X t q d X 0 „ µ ñ “ p X t , X 0 q @ t ě 0 3/20

  8. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Diffusions � Markov process p X t q t ě 0 Stochastic Differential Equation c 2 α d X t “ β d B t ´ α ∇ H p X t q d t � Energy H : x P R d ÞÑ H p x q P R with e ´ H P L 1 p dx q � Non-explosion: if ∇ 2 H ě c P R � Reversible (and thus invariant) Boltzmann-Gibbs measure µ β p d x q “ e ´ β H p x q d x Z β p X 0 , X t q d X 0 „ µ ñ “ p X t , X 0 q @ t ě 0 3/20

  9. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Inifinitesimal generator � Conditional laws: S t p¨qp x q “ Law p X t | X 0 “ x q 4/20

  10. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Inifinitesimal generator � Conditional laws: S t p¨qp x q “ Law p X t | X 0 “ x q � Markov semigroup: S t p f qp x q “ E p f p X t q | X 0 “ x q S 0 “ Identity , S t ˝ S t 1 “ S t ` t 1 4/20

  11. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Inifinitesimal generator � Conditional laws: S t p¨qp x q “ Law p X t | X 0 “ x q � Markov semigroup: S t p f qp x q “ E p f p X t q | X 0 “ x q S 0 “ Identity , S t ˝ S t 1 “ S t ` t 1 � Infinitesimal generator G “ ∆ ´ ∇ H ¨ ∇ ˇ d ˇ S t p f qp x q “ ∆ f p x q ´ x ∇ H p x q , ∇ f p x qy “ G p f qp x q ˇ dt ˇ t “ 0 4/20

  12. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Inifinitesimal generator � Conditional laws: S t p¨qp x q “ Law p X t | X 0 “ x q � Markov semigroup: S t p f qp x q “ E p f p X t q | X 0 “ x q S 0 “ Identity , S t ˝ S t 1 “ S t ` t 1 � Infinitesimal generator G “ ∆ ´ ∇ H ¨ ∇ ˇ d ˇ S t p f qp x q “ ∆ f p x q ´ x ∇ H p x q , ∇ f p x qy “ G p f qp x q ˇ dt ˇ t “ 0 � The operators G and S t “ e tG are symmetric in L 2 p µ q 4/20

  13. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Inifinitesimal generator � Conditional laws: S t p¨qp x q “ Law p X t | X 0 “ x q � Markov semigroup: S t p f qp x q “ E p f p X t q | X 0 “ x q S 0 “ Identity , S t ˝ S t 1 “ S t ` t 1 � Infinitesimal generator G “ ∆ ´ ∇ H ¨ ∇ ˇ d ˇ S t p f qp x q “ ∆ f p x q ´ x ∇ H p x q , ∇ f p x qy “ G p f qp x q ˇ dt ˇ t “ 0 � The operators G and S t “ e tG are symmetric in L 2 p µ q � Fokker-Planck equation if f t “ d µ t d µ with µ t “ Law p X t q then f t “ S t p f 0 q and B t f t “ Gf t 4/20

  14. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy 5/20

  15. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q 5/20

  16. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q � Hermite polynomials: 5/20

  17. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q � Hermite polynomials: § L 2 p µ q “ k 8 n “ 0 vect p P n q 5/20

  18. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q � Hermite polynomials: § L 2 p µ q “ k 8 n “ 0 vect p P n q § GP n “ ´ nP n and S t p P n q “ e ´ nt P n 5/20

  19. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q � Hermite polynomials: § L 2 p µ q “ k 8 n “ 0 vect p P n q § GP n “ ´ nP n and S t p P n q “ e ´ nt P n § G “ ´ ř 8 n “ 0 n Π P n and S t “ ř 8 n “ 0 e ´ nt Π P n 5/20

  20. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q � Hermite polynomials: § L 2 p µ q “ k 8 n “ 0 vect p P n q § GP n “ ´ nP n and S t p P n q “ e ´ nt P n § G “ ´ ř 8 n “ 0 n Π P n and S t “ ř 8 n “ 0 e ´ nt Π P n � Exponential decay (spectral gap): 5/20

  21. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q � Hermite polynomials: § L 2 p µ q “ k 8 n “ 0 vect p P n q § GP n “ ´ nP n and S t p P n q “ e ´ nt P n § G “ ´ ř 8 n “ 0 n Π P n and S t “ ř 8 n “ 0 e ´ nt Π P n � Exponential decay (spectral gap): § } f t ´ 1 } L 2 p µ q ď e ´ t } f 0 ´ 1 } L 2 p µ q 5/20

  22. Dynamics of a planar Coulomb gas Poincar´ e for diffusions Exactly solvable model: Ornstein-Uhlenbeck process ? 2 | x | 2 , d X t “ � Gaussian model: H p x q “ 1 2 d B t ´ X t d t , µ “ N p 0 , I d q , Gf p x q “ ∆ f p x q ´ x x , ∇ f p x qy � Mehler formula: S t p¨qp x q “ Law p X t | X 0 “ x q “ N p x e ´ t , 1 ´ e ´ 2 t q � Hermite polynomials: § L 2 p µ q “ k 8 n “ 0 vect p P n q § GP n “ ´ nP n and S t p P n q “ e ´ nt P n § G “ ´ ř 8 n “ 0 n Π P n and S t “ ř 8 n “ 0 e ´ nt Π P n � Exponential decay (spectral gap): § } f t ´ 1 } L 2 p µ q ď e ´ t } f 0 ´ 1 } L 2 p µ q § Var µ p S t f q ď e ´ t Var µ p f q 5/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend