equidistribution and microscale results for coulomb and
play

Equidistribution and microscale results for Coulomb and Riesz gases - PowerPoint PPT Presentation

Next-order asymptotics Hohenberg-Kohn Equidistribution and microscale results for Coulomb and Riesz gases Mircea Petrache, MPI Bonn April 21, 2017 Next-order asymptotics Hohenberg-Kohn A SYMPTOTICS OF PARTICLES WITH C OULOMB AND R IESZ


  1. Next-order asymptotics Hohenberg-Kohn Equidistribution and microscale results for Coulomb and Riesz gases Mircea Petrache, MPI Bonn April 21, 2017

  2. Next-order asymptotics Hohenberg-Kohn A SYMPTOTICS OF PARTICLES WITH C OULOMB AND R IESZ INTERACTIONS ◮ n � � x i ∈ R d , d ≥ 1 H n ( x 1 , . . . , x n ) = g ( x i − x j ) + n V ( x i ) , i � = j i = 1 ◮ g ( x ) = | x | − s interaction potential, V : R d → ] − ∞ , + ∞ ] confining potential growing at infinity ◮ d − 2 ≤ s < d : Riesz gas, ◮ s = d − 2: Coulomb gas, ◮ s = 0: means g ( x ) = − log | x | , log gas. ◮ Gibbs measure: 1 e − β H n ( x 1 ,..., x n ) dx 1 . . . dx n , x i ∈ R d d P n ,β ( x 1 , · · · , x n ) = Z n ,β Z n ,β = partition function, 0 < β = inverse temperature.

  3. Next-order asymptotics Hohenberg-Kohn A SYMPTOTICS OF PARTICLES WITH C OULOMB AND R IESZ INTERACTIONS ◮ n � � x i ∈ R d , d ≥ 1 H n ( x 1 , . . . , x n ) = g ( x i − x j ) + n V ( x i ) , i � = j i = 1 ◮ g ( x ) = | x | − s interaction potential, V : R d → ] − ∞ , + ∞ ] confining potential growing at infinity ◮ d − 2 ≤ s < d : Riesz gas, ◮ s = d − 2: Coulomb gas, ◮ s = 0: means g ( x ) = − log | x | , log gas. ◮ Gibbs measure: 1 e − β H n ( x 1 ,..., x n ) dx 1 . . . dx n , x i ∈ R d d P n ,β ( x 1 , · · · , x n ) = Z n ,β Z n ,β = partition function, 0 < β = inverse temperature.

  4. Next-order asymptotics Hohenberg-Kohn A SYMPTOTICS OF PARTICLES WITH C OULOMB AND R IESZ INTERACTIONS ◮ n � � x i ∈ R d , d ≥ 1 H n ( x 1 , . . . , x n ) = g ( x i − x j ) + n V ( x i ) , i � = j i = 1 ◮ g ( x ) = | x | − s interaction potential, V : R d → ] − ∞ , + ∞ ] confining potential growing at infinity ◮ d − 2 ≤ s < d : Riesz gas, ◮ s = d − 2: Coulomb gas, ◮ s = 0: means g ( x ) = − log | x | , log gas. ◮ Gibbs measure: 1 e − β H n ( x 1 ,..., x n ) dx 1 . . . dx n , x i ∈ R d d P n ,β ( x 1 , · · · , x n ) = Z n ,β Z n ,β = partition function, 0 < β = inverse temperature.

  5. Next-order asymptotics Hohenberg-Kohn M OTIVATION 1: F EKETE POINTS ◮ In log gas case minimizers of H n are maximizers of n � � e − nV ( x i ) | x i − x j | i < j i = 1 → weighted Fekete sets (approximation theory) Saff-Totik, Rakhmanov-Saff-Zhou. ◮ Fekete points and equilibrium configurations on spheres and other closed manifolds M (Borodachov-Hardin-Saff, Brauchart-Dragnev-Saff) � � 1 x 1 ,..., x n ∈M − log | x i − x j | min or min | x i − x j | s x 1 ... x n ∈M i � = j i � = j → Smale’s 7th “problem for the next century” related to computational complexity theory: find an algorithm that provides an almost minimizer in polynomial time.

  6. Next-order asymptotics Hohenberg-Kohn Minimal s -energy points on a torus, s = 0 , 1 , 0 . 8 , 2 (from Rob Womersley’s webpage)

  7. Next-order asymptotics Hohenberg-Kohn M OTIVATION 2: STATISTICAL MECHANICS � � � β 1 e − n β � n i = 1 V ( x i ) dx 1 . . . dx n d P n ,β ( x 1 , · · · , x n ) = | x i − x j | Z n ,β i < j β = 2 � Vandermonde determinant: determinantal processes; ◮ connection to random matrices , first noticed by Wigner, Dyson ( C ⊃ { x 1 , . . . , x n } = eigenvalues of n × n matrices) ◮ d = 1, Coulomb gas: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb ◮ more recently: microscopic rigidity and universality principles Valko-Virag ’09, Bourgade-Erd¨ os-Yau ’12, Scherbina ’14, Beckerman-Figalli-Guionnet ’14... ◮ Statistical mechanics of Coulomb and (recently) Riesz gasses : d = 1 log gas or d ≥ 2 Coulomb gas Lieb-Narnhofer, Penrose-Smith, Frohlich-Spencer, Jancovici-Lebowitz-Manificat, Kiessling, Kiessling-Spohn,..., general s < d Chafai-Gozlan-Zitt

  8. Next-order asymptotics Hohenberg-Kohn M OTIVATION 2: STATISTICAL MECHANICS � � � β 1 e − n β � n i = 1 V ( x i ) dx 1 . . . dx n d P n ,β ( x 1 , · · · , x n ) = | x i − x j | Z n ,β i < j β = 2 � Vandermonde determinant: determinantal processes; ◮ connection to random matrices , first noticed by Wigner, Dyson ( C ⊃ { x 1 , . . . , x n } = eigenvalues of n × n matrices) ◮ d = 1, Coulomb gas: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb ◮ more recently: microscopic rigidity and universality principles Valko-Virag ’09, Bourgade-Erd¨ os-Yau ’12, Scherbina ’14, Beckerman-Figalli-Guionnet ’14... ◮ Statistical mechanics of Coulomb and (recently) Riesz gasses : d = 1 log gas or d ≥ 2 Coulomb gas Lieb-Narnhofer, Penrose-Smith, Frohlich-Spencer, Jancovici-Lebowitz-Manificat, Kiessling, Kiessling-Spohn,..., general s < d Chafai-Gozlan-Zitt

  9. Next-order asymptotics Hohenberg-Kohn Eigenvalues of 1000-by-1000 matrix with i.i.d Gaussian entries ( β = 2, V ( x ) = | x | 2 ) (from Benedek Valk´ o’s webpage)

  10. Next-order asymptotics Hohenberg-Kohn M OTIVATION 3: MODELS IN SUPERCONDUCTIVITY ◮ (H. Kamerlingh Onnes* 1911) Cooper* pairs, Meissner effect ◮ Rotating superfluids and Bose-Einstein* condensates, modelled by Ginzburg*-Landau* energy: � |∇ A ψ | 2 + | curl A − h ex | 2 + ( 1 − | ψ | 2 ) 2 G ε ( ψ, A ) = 1 2 2 ε 2 Ω ◮ Formation of Abrikosov* structured vortices. ◮ The functional H n describes the interaction of vortices under G ε -energy (Sandier-Serfaty). (*: Nobel prize winner)

  11. Next-order asymptotics Hohenberg-Kohn Abrikosov lattices: superconducting vortices on Mg B 2 and Nb Se 2 crystals (Vinnikov, Phys.Rev.B ’03, Hess, Phys.Rev.Lett. ’89)

  12. Next-order asymptotics Hohenberg-Kohn T HE LEADING ORDER TO min H n ( OR “ CONTINUUM / MEAN FIELD LIMIT ”) ◮ Assume V → ∞ at ∞ (faster than log | x | in the log cases). For ( x 1 , . . . , x n ) minimizing H n = � i � = j g ( x i − x j ) + n � n i = 1 V ( x i ) , one has � n i = 1 δ x i min H n = µ V = E ( µ V ) lim lim n n 2 n →∞ n →∞ where µ V is the unique minimizer of � � E ( µ ) = R d × R d g ( x − y ) d µ ( x ) d µ ( y ) + R d V ( x ) d µ ( x ) . among probability measures. ◮ E has a unique minimizer µ V among probability measures: the equilibrium measure Frostman 30’s

  13. Next-order asymptotics Hohenberg-Kohn N EXT ORDER EXPANSION OF min H n ◮ Sandier-Serfaty, ’10-’12: d = 1 , 2, g ( x ) = − log | x | ◮ Rougerie-Serfaty, ’13-’16: g ( x ) = 1 / | x | d − 2 ◮ Petrache-Serfaty, ’15-’16: all previous cases plus Riesz cases max ( 0 , d − 2 ) ≤ s < d Theorem (ground state energy, Petrache-Serfaty) Under suitable assumptions on V, as n → ∞ we have min H n =  � � �  µ 1 + s / d  n 2 E ( µ V ) + n 1 + s / d ξ s , d ( x ) dx + o ( 1 )  V � � � n 2 E ( µ V ) − n ξ 0 , d − 1   d log n + n µ V ( x ) log µ V ( x ) dx + o ( 1 )  d where ξ s , d = min W is a functional on microscopic configurations .

  14. Next-order asymptotics Hohenberg-Kohn L OCALIZATION PROCEDURE ◮ When g is the Coulomb kernel, then for a measure µ , � � � ( − ∆ − 1 µ ) µ = |∇ (∆ − 1 µ ) | 2 ( g ∗ µ ) µ = The energy is a single integral, if expressed in terms of the potential g ∗ µ = − ∆ − 1 µ . ◮ If d − 2 < s < d , then g ( x ) = | x | − s is the kernel of a fractional Laplacian ∆ α , α ∈ ] 0 , 1 [ , a nonlocal operator. ◮ Caffarelli-Silvestre extension method: | X | − s is the kernel of a local operator − div ( | y | γ ∇· ) (elliptic, with a good theory) when the space R d is extended by one dimension to R d + 1 = { X = ( x , y ) , x ∈ R d , y ∈ R } . It suffices to take γ = s − d + 1 .

  15. Next-order asymptotics Hohenberg-Kohn ◮ Let k be extension dimension. Identify R d with R d × { 0 } ⊂ R d + k . ◮ In the Coulomb cases k = 0 and γ = 0, In the Riesz cases and d = 1 logarithmic case, then k = 1. ◮ δ R d the uniform measure on R d × { 0 } ⊂ R d + k ◮ Then � R d + k g ( X − X ′ ) ( µδ R d )( X ′ ) h := g ∗ ( µδ R d ) = is the solution in R d + k of − div ( | y | γ ∇ h ) = c d , s µδ R d where in all cases γ := s − d + 2 − k ◮ In terms of h , we find a single integral: � � R d + k | y | γ |∇ h | 2 . ( g ∗ µ ) µ = c d , s

  16. Next-order asymptotics Hohenberg-Kohn S PLITTING FORMULA Define δ ( η ) = measure of mass 1 on ∂ B ( 0 , η ) , such that x − div ( | y | γ ∇ g η ) = c d , s δ ( η ) g η := min ( g , g ( η )) 0 �� � � g ( x − y ) δ ( ℓ ) x i ( x ) δ ( ℓ ) g ( x i − x j ) = lim x j ( y ) ℓ → 0 i � = j i � = j �� �� � � � � n n � � δ ( ℓ ) δ ( ℓ ) g ( x − y ) δ ( ℓ ) 0 ( x ) δ ( ℓ ) = lim g ( x − y ) ( x ) ( y ) − n 0 ( y ) x i x j ℓ → 0 � �� � i = 1 j = 1 � �� � constant self-interaction term = c d , s g ( ℓ ) total interaction between smeared-out charges � � n � Insert the splitting � n i = 1 δ ( ℓ ) i = i δ ( ℓ ) = n µ V + x i − n µ V and x i Frostman’s characterization of µ V : g ∗ µ V + 1 2 V − c =: ζ ≥ 0 , ζ = 0 in spt ( µ V ) , � V where c = E ( µ V ) − 2 d µ V .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend