a combinatorial proof of joint equidistribution of some
play

A combinatorial proof of joint equidistribution of some pairs of - PowerPoint PPT Presentation

A combinatorial proof of joint equidistribution of some pairs of permutation statistics Alexander Burstein Department of Mathematics Howard University aburstein@howard.edu 10th International Conference on Permutation Patterns University of


  1. A combinatorial proof of joint equidistribution of some pairs of permutation statistics Alexander Burstein Department of Mathematics Howard University aburstein@howard.edu 10th International Conference on Permutation Patterns University of Strathclyde, Glasgow, Scotland June 11-15, 2012 Alex Burstein aid-des-inv-lec

  2. Combinatorial statistics Definition A combinatorial statistic on a set S is a map f : S → N m for some integer m ≥ 0. The distribution of f is the map d f : N m → N with d f ( i ) = | f − 1 ( i ) | for i ∈ N m , where | f − 1 ( i ) | is the number of objects s ∈ S such that f ( s ) = i . Definition We say that statistics f and g are equidistributed and write f ∼ g if d f = d g . Alex Burstein aid-des-inv-lec

  3. Combinatorial statistics Definition A combinatorial statistic on a set S is a map f : S → N m for some integer m ≥ 0. The distribution of f is the map d f : N m → N with d f ( i ) = | f − 1 ( i ) | for i ∈ N m , where | f − 1 ( i ) | is the number of objects s ∈ S such that f ( s ) = i . Definition We say that statistics f and g are equidistributed and write f ∼ g if d f = d g . Alex Burstein aid-des-inv-lec

  4. Classical permutation statistics Let S = S n , π ∈ S n . Descents: Let Des ( π ) = { i : π ( i ) > π ( i + 1) } , the descent set of π , and let des ( π ) = | Des ( π ) | . . . . ba . . . , b > a , b = descent top , a = descent bottom Inversions: Let Inv ( π ) = { ( i , j ) | i < j and π ( i ) > π ( j ) } and inv ( π ) = | Inv ( π ) | . . . . b . . . a . . . , b > a Alex Burstein aid-des-inv-lec

  5. Eulerian and Mahonian statistics Definition Eulerian statistics – same distribution as des . Mahonian statistics – same distribution as inv . Example (Eulerian statistics) Excedances: exc ( π ) = |{ i : π ( i ) > i }| Example (Mahonian statistics) � Major index: maj ( π ) = (MacMahon) i i ∈ Des ( π ) Alex Burstein aid-des-inv-lec

  6. Distribution Example S 3 des exc S 3 inv maj 123 0 0 123 0 0 132 1 1 132 1 2 213 1 1 213 1 1 231 1 2 231 2 2 312 1 1 312 2 1 321 2 1 321 3 3 Alex Burstein aid-des-inv-lec

  7. Eulerian and Mahonian partners ( inv , des ) ∼ ( maj , dmc ) (Foata; 1977) ( maj , des ) ∼ ( den , exc ) (Foata, Zeilberger; 1990) ( inv , exc ) ∼ ( mad , des ) (Clarke, Steingr´ ımsson, Zeng; 1997) ( maj , des ) ∼ ( inv , stc ) (Scandera; 2002) ( maj , exc ) ∼ ( aid , des ) (Shareshian, Wachs; 2007) ( maj , exc ) ∼ ( inv , lec ) (Foata, Han; 2008) Alex Burstein aid-des-inv-lec

  8. Eulerian and Mahonian partners ( inv , des ) ∼ ( maj , dmc ) (Foata; 1977) ( maj , des ) ∼ ( den , exc ) (Foata, Zeilberger; 1990) ( inv , exc ) ∼ ( mad , des ) (Clarke, Steingr´ ımsson, Zeng; 1997) ( maj , des ) ∼ ( inv , stc ) (Scandera; 2002) ( maj , exc ) ∼ ( aid , des ) (Shareshian, Wachs; 2007) ( maj , exc ) ∼ ( inv , lec ) (Foata, Han; 2008) Alex Burstein aid-des-inv-lec

  9. Eulerian and Mahonian partners ( inv , des ) ∼ ( maj , dmc ) (Foata; 1977) ( maj , des ) ∼ ( den , exc ) (Foata, Zeilberger; 1990) ( inv , exc ) ∼ ( mad , des ) (Clarke, Steingr´ ımsson, Zeng; 1997) ( maj , des ) ∼ ( inv , stc ) (Scandera; 2002) ( maj , exc ) ∼ ( aid , des ) (Shareshian, Wachs; 2007) ( maj , exc ) ∼ ( inv , lec ) (Foata, Han; 2008) Alex Burstein aid-des-inv-lec

  10. Eulerian and Mahonian partners ( inv , des ) ∼ ( maj , dmc ) (Foata; 1977) ( maj , des ) ∼ ( den , exc ) (Foata, Zeilberger; 1990) ( inv , exc ) ∼ ( mad , des ) (Clarke, Steingr´ ımsson, Zeng; 1997) ( maj , des ) ∼ ( inv , stc ) (Scandera; 2002) ( maj , exc ) ∼ ( aid , des ) (Shareshian, Wachs; 2007) ( maj , exc ) ∼ ( inv , lec ) (Foata, Han; 2008) Alex Burstein aid-des-inv-lec

  11. Eulerian and Mahonian partners ( inv , des ) ∼ ( maj , dmc ) (Foata; 1977) ( maj , des ) ∼ ( den , exc ) (Foata, Zeilberger; 1990) ( inv , exc ) ∼ ( mad , des ) (Clarke, Steingr´ ımsson, Zeng; 1997) ( maj , des ) ∼ ( inv , stc ) (Scandera; 2002) ( maj , exc ) ∼ ( aid , des ) (Shareshian, Wachs; 2007) ( maj , exc ) ∼ ( inv , lec ) (Foata, Han; 2008) Alex Burstein aid-des-inv-lec

  12. Eulerian and Mahonian partners ( inv , des ) ∼ ( maj , dmc ) (Foata; 1977) ( maj , des ) ∼ ( den , exc ) (Foata, Zeilberger; 1990) ( inv , exc ) ∼ ( mad , des ) (Clarke, Steingr´ ımsson, Zeng; 1997) ( maj , des ) ∼ ( inv , stc ) (Scandera; 2002) ( maj , exc ) ∼ ( aid , des ) (Shareshian, Wachs; 2007) ( maj , exc ) ∼ ( inv , lec ) (Foata, Han; 2008) Alex Burstein aid-des-inv-lec

  13. Admissible inversions Definition An inversion ( i , j ) ∈ Inv ( π ) is admissible if π ( j ) < π ( j + 1), or π ( j ) > π ( k ) for some k ∈ ( i , j ). Ai ( π ) = set of admissible inversions of π ai ( π ) = | Ai ( π ) | aid ( π ) = ai ( π ) + des ( π ) Example S 3 123 132 213 231 312 321 0 0 1 0 2 0 ai 0 1 1 1 1 2 des 0 1 2 1 3 2 aid Alex Burstein aid-des-inv-lec

  14. Admissible inversions Definition An inversion ( i , j ) ∈ Inv ( π ) is admissible if π ( j ) < π ( j + 1), or π ( j ) > π ( k ) for some k ∈ ( i , j ). Ai ( π ) = set of admissible inversions of π ai ( π ) = | Ai ( π ) | aid ( π ) = ai ( π ) + des ( π ) Example S 3 123 132 213 231 312 321 0 0 1 0 2 0 ai 0 1 1 1 1 2 des 0 1 2 1 3 2 aid Alex Burstein aid-des-inv-lec

  15. Admissible inversions Definition An inversion ( i , j ) ∈ Inv ( π ) is admissible if π ( j ) < π ( j + 1), or π ( j ) > π ( k ) for some k ∈ ( i , j ). Ai ( π ) = set of admissible inversions of π ai ( π ) = | Ai ( π ) | aid ( π ) = ai ( π ) + des ( π ) Example S 3 123 132 213 231 312 321 0 0 1 0 2 0 ai 0 1 1 1 1 2 des 0 1 2 1 3 2 aid Alex Burstein aid-des-inv-lec

  16. Admissible inversions Definition An inversion ( i , j ) ∈ Inv ( π ) is admissible if π ( j ) < π ( j + 1), or π ( j ) > π ( k ) for some k ∈ ( i , j ). Ai ( π ) = set of admissible inversions of π ai ( π ) = | Ai ( π ) | aid ( π ) = ai ( π ) + des ( π ) Example S 3 123 132 213 231 312 321 0 0 1 0 2 0 ai 0 1 1 1 1 2 des 0 1 2 1 3 2 aid Alex Burstein aid-des-inv-lec

  17. Admissible inversions Definition An inversion ( i , j ) ∈ Inv ( π ) is admissible if π ( j ) < π ( j + 1), or π ( j ) > π ( k ) for some k ∈ ( i , j ). Ai ( π ) = set of admissible inversions of π ai ( π ) = | Ai ( π ) | aid ( π ) = ai ( π ) + des ( π ) Example S 3 123 132 213 231 312 321 0 0 1 0 2 0 ai 0 1 1 1 1 2 des 0 1 2 1 3 2 aid Alex Burstein aid-des-inv-lec

  18. Admissible inversions Definition An inversion ( i , j ) ∈ Inv ( π ) is admissible if π ( j ) < π ( j + 1), or π ( j ) > π ( k ) for some k ∈ ( i , j ). Ai ( π ) = set of admissible inversions of π ai ( π ) = | Ai ( π ) | aid ( π ) = ai ( π ) + des ( π ) Example S 3 123 132 213 231 312 321 0 0 1 0 2 0 ai 0 1 1 1 1 2 des 0 1 2 1 3 2 aid Alex Burstein aid-des-inv-lec

  19. aid as a pattern statistic Admissible inversions can be expressed as a sum of pattern occurrence statistics: ai = (2-13) + (3-12) + (3-1-1 ′ -2) So, aid = (2-13) + (3-12) + (3-1-1 ′ -2) + (21) Why is aid Mahonian? Alex Burstein aid-des-inv-lec

  20. aid as a pattern statistic Admissible inversions can be expressed as a sum of pattern occurrence statistics: ai = (2-13) + (3-12) + (3-1-1 ′ -2) So, aid = (2-13) + (3-12) + (3-1-1 ′ -2) + (21) Why is aid Mahonian? Alex Burstein aid-des-inv-lec

  21. aid as a pattern statistic Admissible inversions can be expressed as a sum of pattern occurrence statistics: ai = (2-13) + (3-12) + (3-1-1 ′ -2) So, aid = (2-13) + (3-12) + (3-1-1 ′ -2) + (21) Why is aid Mahonian? Alex Burstein aid-des-inv-lec

  22. aid as a pattern statistic Admissible inversions can be expressed as a sum of pattern occurrence statistics: ai = (2-13) + (3-12) + (3-1-1 ′ -2) So, aid = (2-13) + (3-12) + (3-1-1 ′ -2) + (21) Why is aid Mahonian? Alex Burstein aid-des-inv-lec

  23. aid as a pattern statistic Admissible inversions can be expressed as a sum of pattern occurrence statistics: ai = (2-13) + (3-12) + (3-1-1 ′ -2) So, aid = (2-13) + (3-12) + (3-1-1 ′ -2) + (21) Why is aid Mahonian? Alex Burstein aid-des-inv-lec

  24. Subexcedant sequences and Lehmer codes Definition Let SE n = { ( a 1 , . . . , a n ) : a i ∈ [0 , n − i ] } . A sequence a ∈ SE n is called a subexcedant sequence of length n . Obviously, | SE n | = n ! = | S n | . Definition For a statistic st on S n , let stcode : S n → SE n be such that n � stcode ( π ) = ( a 1 , . . . , a n ) = ⇒ st ( π ) = a i , π ∈ S n . i =1 We call stcode a Lehmer code of π with respect to st . Example Let a i = |{ j > i : π ( j ) < π ( i ) }| . Then we can define invcode ( π ) = ( a 1 , . . . , a n ). Alex Burstein aid-des-inv-lec

  25. Subexcedant sequences and Lehmer codes Definition Let SE n = { ( a 1 , . . . , a n ) : a i ∈ [0 , n − i ] } . A sequence a ∈ SE n is called a subexcedant sequence of length n . Obviously, | SE n | = n ! = | S n | . Definition For a statistic st on S n , let stcode : S n → SE n be such that n � stcode ( π ) = ( a 1 , . . . , a n ) = ⇒ st ( π ) = a i , π ∈ S n . i =1 We call stcode a Lehmer code of π with respect to st . Example Let a i = |{ j > i : π ( j ) < π ( i ) }| . Then we can define invcode ( π ) = ( a 1 , . . . , a n ). Alex Burstein aid-des-inv-lec

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend