a sextuple equidistribution arising in pattern avoidance
play

A sextuple equidistribution arising in Pattern Avoidance Zhicong - PowerPoint PPT Presentation

A sextuple equidistribution arising in Pattern Avoidance Zhicong Lin NIMS & Jimei University 78th S eminaire Lotharingien de Combinatoire March 29, 2017 Joint work with Dongsu Kim Zhicong Lin A sextuple equidistribution arising in


  1. A sextuple equidistribution arising in Pattern Avoidance Zhicong Lin NIMS & Jimei University 78th S´ eminaire Lotharingien de Combinatoire March 29, 2017 Joint work with Dongsu Kim Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  2. Eulerian polynomials Definition The Eulerian polynomial A n ( t ) may be defined by Euler’s basic formula (Leonhard Euler 1755): A n ( t ) ( k + 1) n t k = � (1 − t ) n +1 . k ≥ 0 A 1 ( t ) = 1 A 2 ( t ) = 1 + t A 3 ( t ) = 1 + 4 t + t 2 A 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 A 5 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4 Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  3. Permutation Statistics S n : Set of permutations of [ n ] := { 1 , 2 , · · · , n } Definition For π = π 1 π 2 · · · π n ∈ S n : DES ( π ) := { i ∈ [ n − 1] : π i > π i +1 } des ( π ) := | DES ( π ) | (Descent number) . DES (3 . 15 . 24) = { 1 , 3 } Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  4. Permutation Statistics S n : Set of permutations of [ n ] := { 1 , 2 , · · · , n } Definition For π = π 1 π 2 · · · π n ∈ S n : DES ( π ) := { i ∈ [ n − 1] : π i > π i +1 } des ( π ) := | DES ( π ) | (Descent number) . DES (3 . 15 . 24) = { 1 , 3 } Theorem (Riordan 1958) � t des ( π ) . A n ( t ) = π ∈ S n Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  5. Inversion sequences Inversion sequences: I n = { ( e 1 , e 2 , . . . , e n ) ∈ Z n : 0 ≤ e i < i } I 3 = { (0 , 0 , 0) , (0 , 0 , 1) , (0 , 0 , 2) , (0 , 1 , 0) , (0 , 1 , 1) , (0 , 1 , 2) } Definition For e = ( e 1 , e 2 , · · · , e n ) ∈ I n : ASC ( e ) := { i ∈ [ n − 1] : e i < e i +1 } asc( e ) := | ASC ( e ) | (Ascent number) . ASC (0 , 1 , 1 , 2 , 0) = { 1 , 3 } Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  6. A natural bijection: inv -code | S n | = | I n | = n ! and more... t des ( π ) = � � t asc( e ) π ∈ S n e ∈ I n Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  7. A natural bijection: inv -code | S n | = | I n | = n ! and more... t des ( π ) = � � t asc( e ) π ∈ S n e ∈ I n A natural bijection ( inv -code) φ : S n → I n with φ ( π ) = ( e 1 , . . . , e n ), where e i = |{ j : j < i and π j > π i }| . Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  8. A natural bijection: inv -code | S n | = | I n | = n ! and more... t des ( π ) = � � t asc( e ) π ∈ S n e ∈ I n A natural bijection ( inv -code) φ : S n → I n with φ ( π ) = ( e 1 , . . . , e n ), where e i = |{ j : j < i and π j > π i }| . This proves even more: t DES ( π ) = � � t ASC( e ) , π ∈ S n e ∈ I n where t { i 1 ,..., i k } := t i 1 · · · t i k . Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  9. Double Eulerian statistics dist( e ): number of distinct positive entries in e Theorem (Dumont 1974) t des ( π ) = � � t dist( e ) . π ∈ S n e ∈ I n Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  10. Double Eulerian statistics dist( e ): number of distinct positive entries in e Theorem (Dumont 1974) t des ( π ) = � � t dist( e ) . π ∈ S n e ∈ I n Via V-code and S-code: Theorem (Foata 1977) s des ( π − 1 ) t DES ( π ) = � � s dist( e ) t ASC( e ) . π ∈ S n e ∈ I n Rediscovered by Visontai (2013) An essentially different proof by Aas in PP 2013 (Paris) Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  11. Gessel’s γ -positivity conjecture Double Eulerian polynomials (Carlitz-Roselle-Scoville 1966): s des ( π − 1 ) t des ( π ) . � A n ( s , t ) := π ∈ S n Conjectured by Gessel (2005): Theorem (L. 2015) The integers γ n , i , j are nonnegative in: � γ n , i , j ( st ) i (1 + st ) j ( s + t ) n − 1 − j − 2 i . A n ( s , t ) = i , j ≥ 0 j +2 i ≤ n − 1 Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  12. Permutations without double descents 8 r � ❅ r 7 � ✛ � ❅ ❅ r 6 � � ✲ 5 ❅ ❅ � � ✲ r 4 ❅ ❅ � � r ✲ 3 ❅ ❅ � r ❅ r 2 � ❅ � ✛ r 1 ❅ � ❅ −∞ −∞ Figure : Foata-Strehl actions on 34862571 NDD n : set of all permutations in S n without double descents Theorem (Foata & Sch¨ utzenberger 1970) ⌊ ( n − 1) / 2 ⌋ � γ n , i t i (1 + t ) n +1 − 2 i , A n ( t ) = i =0 where γ n , i = # { π ∈ NDD n : des ( π ) = i } . Problem Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  13. Permutations without double descents NDD n : set of all permutations in S n without double descents Theorem (Foata & Sch¨ utzenberger 1970) ⌊ ( n − 1) / 2 ⌋ � γ n , i t i (1 + t ) n +1 − 2 i , A n ( t ) = i =0 where γ n , i = # { π ∈ NDD n : des ( π ) = i } . Problem Is there any combinatorial interpretation for γ n , i , j ? Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  14. Separable permutations Restrict to the terms without s + t : π = 2413 ❍❍ r des ( π ) = 1 ❇ ❇ ❍ des ( π − 1 ) = 2 ❇ r ❇ ❍❍ First des ( π ) � = des ( π − 1 ) r ❍ ❇ r Definition Permutations that avoid both the patterns 2413 and 3142 are separable permutations. West (1995): | S n (2413 , 3142) | = S n , the n th Large Schr¨ oder numbers. Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  15. Separable permutations Separable permutations “di-sk” trees ⊖ ⊖ ⊕ bij. ⇐ ⇒ ⊖ ⊖ ⊕ ⊕ ⊖ Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  16. Descent polynomial on Separable permutations Via combinatorial approach using “di-sk” trees: Theorem (Fu-L.-Zeng 2015) ⌊ ( n − 1) / 2 ⌋ t des ( π ) = � � γ S n , k t k (1 + t ) n − 1 − 2 k , π ∈ S n (2413 , 3142) k =0 where γ S n , k = |{ π ∈ S n (3142 , 2413) ∩ NDD n : des ( π ) = k }| . Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  17. 021-avoiding inversion sequences 021-avoiding ⇔ positive entries are weakly increasing Via bijections with “di-sk” trees: Theorem (Fu-L.-Zeng & Corteel et al. 2015) t des ( π ) = � � t asc( e ) . π ∈ S n (2413 , 3142) e ∈ I n (021) Problem ⌊ ( n − 1) / 2 ⌋ t asc( e ) = � � γ S n , k t k (1 + t ) n − 1 − 2 k k =0 e ∈ I n (021) What is the combinatorial interpretation of γ S n , k in terms of 021 -avoiding inversion sequences? Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  18. Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  19. Double Eulerian equidistribution Theorem (Foata 1977) s des ( π − 1 ) t DES ( π ) = � � s dist( e ) t ASC( e ) . π ∈ S n e ∈ I n Restricted version of Foata’s 1977 result: Theorem (Kim-L. 2016) s des ( π − 1 ) t DES ( π ) = � � s dist( e ) t ASC( e ) . π ∈ S n (2413 , 4213) e ∈ I n (021) Neither Foata’s original bijection nor Aas’ approach could be applied to prove this restricted version. Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  20. First application 8 r � ❅ r 7 � ✛ � ❅ ❅ r 6 � � ✲ ❅ ❅ 5 � � r ✲ 4 ❅ ❅ � r � ✲ 3 ❅ ❅ � r ❅ r 2 � ❅ � ✛ r 1 ❅ � ❅ −∞ −∞ As S n (2413 , 4213) is invariant under Foata-Strehl action: Corollary ⌊ ( n − 1) / 2 ⌋ t asc( e ) = � � γ S n , k t k (1 + t ) n − 1 − 2 k , e ∈ I n (021) k =0 where γ S n , k = |{ e ∈ I n (021) : e has no double ascents , asc( e ) = k }| . Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  21. Second application d �→ 0 1 0 1 2 0 4 Figure : The outline of an inversion sequence s des ( π − 1 ) t des ( π ) � z n � S = S ( s , t ; z ) := n ≥ 1 π ∈ S n (2413 , 4213) Theorem (Double Eulerian distribution) S = t ( z ( s − 1) + 1) S + tz (2 s − 1) S 2 + z ( ts + 1) S + z . Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  22. Ascents on Schr¨ oder paths A Schr¨ oder n -path is a lattice path on the plane from (0 , 0) to (2 n , 0), never going below x -axis, using the steps (1 , 1) (1 , − 1) (2 , 0) . ✉ � ❅ � ❅ � ❅ ✉ ✉ ✉ ✉ � ❅ � ❅ � � ❅ ❅ � ❅ ✉ � ❅ ✉ ✉ ✉ Corollary (Conjecture of Corteel et al. 2015) An ascent in a Schr¨ oder path is a maximal string of consecutive up steps. Denoted by SP n the set of Schr¨ oder n-path and by asc( p ) the number of ascents of p. Then, s dist( e ) = � � s asc( p ) . p ∈ SP n − 1 e ∈ I n (021) Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

  23. A sextuple equidistribution (Statistics) For each π ∈ S n : VID ( π ) := { 2 ≤ i ≤ n : π i appears to the right of ( π i + 1) } , the v alues of i nverse d escents of π ; LMA ( π ) := { i ∈ [ n ] : π i > π j for all 1 ≤ j < i } , the positions of l eft-to-right ma xima of π ; LMI ( π ) := { i ∈ [ n ] : π i < π j for all 1 ≤ j < i } , the positions of l eft-to-right mi nima of π ; RMA ( π ) := { i ∈ [ n ] : π i > π j for all j ≥ i } , the positions of r ight-to-left ma xima of π ; RMI ( π ) := { i ∈ [ n ] : π i < π j for all j ≥ i } , the positions of r ight-to-left mi nima of π ; Zhicong Lin A sextuple equidistribution arising in Pattern Avoidance

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend