avoidance coupling
play

Avoidance Coupling Ohad N. Feldheim Institute of Mathematics and - PowerPoint PPT Presentation

Avoidance Coupling Ohad N. Feldheim Institute of Mathematics and its Applications, UMN Jan 2015 Ohad N. Feldheim Avoidance Coupling Avoidance Coupling Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). k agents, a 0 , . . . ,


  1. Simple Examples - I - Tori On a 2 n cycle graph - maximal SAC is a least of size n . Lower bound: move all agents in 1 the same direction in each round. Upper bound: neighbours must keep moving in the same direction. This is a minimum-entropy 0 2 coupling. The same principle works for Z d / n Z d , Ohad N. Feldheim Avoidance Coupling

  2. Simple Examples - II - loop triangle On a K ∗ 3 - maximal SAC is of size 2. Ohad N. Feldheim Avoidance Coupling

  3. Simple Examples - II - loop triangle On a K ∗ 3 - maximal SAC is of size 2. Strategy: a 1 makes a random walk. 0 1 If a 1 stays - a 0 moves, otherwise - a 0 follows its only viable option. 0 1 0 1 Ohad N. Feldheim Avoidance Coupling

  4. Simple Examples - II - loop triangle On a K ∗ 3 - maximal SAC is of size 2. Strategy: a 1 makes a random walk. 0 1 If a 1 stays - a 0 moves, otherwise - a 0 follows its only viable option. 0 1 0 1 This walk is: minimum-entropy coupling, invariant to time reversal. Ohad N. Feldheim Avoidance Coupling

  5. Results for K n , K ∗ n Theorem (Angel, Holroyd, Martin, Wilson & Winkler) Let n = 2 d +1 . There exists a Markovian, minimum-entropy SAC of 2 d agents on K ∗ n , K ∗ n +1 and K n +1 . Ohad N. Feldheim Avoidance Coupling

  6. Results for K n , K ∗ n Theorem (Angel, Holroyd, Martin, Wilson & Winkler) Let n = 2 d +1 . There exists a Markovian, minimum-entropy SAC of 2 d agents on K ∗ n , K ∗ n +1 and K n +1 . AC ( G ) := maximum SAC on G . Theorem AC ( K ∗ n ) is monotone in n . (AHMWW) AC ( K n ) is monotone in n . (F) Ohad N. Feldheim Avoidance Coupling

  7. Results for K n , K ∗ n Theorem (Angel, Holroyd, Martin, Wilson & Winkler) Let n = 2 d +1 . There exists a Markovian, minimum-entropy SAC of 2 d agents on K ∗ n , K ∗ n +1 and K n +1 . AC ( G ) := maximum SAC on G . Theorem AC ( K ∗ n ) is monotone in n . (AHMWW) AC ( K n ) is monotone in n . (F) Corollary There exists a SAC of ⌈ n / 4 ⌉ agents on both K ∗ n and K n . Ohad N. Feldheim Avoidance Coupling

  8. Results for K n , K ∗ n Theorem (Angel, Holroyd, Martin, Wilson & Winkler) Let n = 2 d +1 . There exists a Markovian, minimum-entropy SAC of 2 d agents on K ∗ n , K ∗ n +1 and K n +1 . AC ( G ) := maximum SAC on G . Theorem [Bernoulli SAC] AC ( K ∗ n ) is monotone in n . (AHMWW) [POSAC] AC ( K n ) is monotone in n . (F) Corollary There exists a SAC of ⌈ n / 4 ⌉ agents on both K ∗ n and K n . Ohad N. Feldheim Avoidance Coupling

  9. Results for K n , K ∗ n Theorem (Angel, Holroyd, Martin, Wilson & Winkler) Let n = 2 d +1 . There exists a Markovian, minimum-entropy SAC of 2 d agents on K ∗ n , K ∗ n +1 and K n +1 . AC ( G ) := maximum SAC on G . Theorem [Bernoulli SAC] AC ( K ∗ n ) is monotone in n . (AHMWW) [POSAC] AC ( K n ) is monotone in n . (F) Corollary There exists a SAC of ⌈ n / 4 ⌉ agents on both K ∗ n and K n . These couplings are hidden Markovian. Ohad N. Feldheim Avoidance Coupling

  10. Constructing an Avoidance Coupling on K d 2 +1 1 0 3 2

  11. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , Ohad N. Feldheim Avoidance Coupling

  12. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Ohad N. Feldheim Avoidance Coupling

  13. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). Ohad N. Feldheim Avoidance Coupling

  14. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). t . . . ε d − 1 Let ε 0 be i.i.d. uniform { -1,1 } variables, and let δ t be an t independent uniform { 0 , 1 } variable. Ohad N. Feldheim Avoidance Coupling

  15. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). t . . . ε d − 1 Let ε 0 be i.i.d. uniform { -1,1 } variables, and let δ t be an t independent uniform { 0 , 1 } variable. we set d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 1 0 2 3 Ohad N. Feldheim Avoidance Coupling

  16. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). t . . . ε d − 1 Let ε 0 be i.i.d. uniform { -1,1 } variables, and let δ t be an t independent uniform { 0 , 1 } variable. we set d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 δ t determines a 0 ( t ) = a 00 ( t ). 1 0 2 3 Ohad N. Feldheim Avoidance Coupling

  17. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). t . . . ε d − 1 Let ε 0 be i.i.d. uniform { -1,1 } variables, and let δ t be an t independent uniform { 0 , 1 } variable. we set d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 0 δ t determines a 0 ( t ) = a 00 ( t ). Then ε 0 t determines a 1 ( t ) = a 01 ( t ), 1 2 3 Ohad N. Feldheim Avoidance Coupling

  18. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). t . . . ε d − 1 Let ε 0 be i.i.d. uniform { -1,1 } variables, and let δ t be an t independent uniform { 0 , 1 } variable. we set d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 0 1 δ t determines a 0 ( t ) = a 00 ( t ). Then ε 0 t determines a 1 ( t ) = a 01 ( t ), and ε 1 t determines a 2 ( t ) = a 10 ( t ). 2 3 Ohad N. Feldheim Avoidance Coupling

  19. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). t . . . ε d − 1 Let ε 0 be i.i.d. uniform { -1,1 } variables, and let δ t be an t independent uniform { 0 , 1 } variable. we set d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 0 1 δ t determines a 0 ( t ) = a 00 ( t ). Then ε 0 t determines a 1 ( t ) = a 01 ( t ), and ε 1 t determines a 2 ( t ) = a 10 ( t ). 2 a 3 ( t ) = a 11 ( t ) is fixed by ε 0 t , ε 1 t . 3 Ohad N. Feldheim Avoidance Coupling

  20. 2 d agents SAC on K 2 d +1 +1 Write n = 2 d , V = { 0 , . . . , 2 n } , assume WLOG a n ( t − 1) = 0. Let m < n and write m := � m i 2 i . We now define a m ( t ) | a n ( t − 1). t . . . ε d − 1 Let ε 0 be i.i.d. uniform { -1,1 } variables, and let δ t be an t independent uniform { 0 , 1 } variable. we set d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 0 1 3 δ t determines a 0 ( t ) = a 00 ( t ). Then ε 0 t determines a 1 ( t ) = a 01 ( t ), and ε 1 t determines a 2 ( t ) = a 10 ( t ). 2 a 3 ( t ) = a 11 ( t ) is fixed by ε 0 t , ε 1 t . Ohad N. Feldheim Avoidance Coupling

  21. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 We need to show: No collision in the same round Each agent performs simple random walk No collisions between rounds Ohad N. Feldheim Avoidance Coupling

  22. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 We need to show: No collision in the same round - straightforward. Each agent performs simple random walk No collisions between rounds Ohad N. Feldheim Avoidance Coupling

  23. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 We need to show: No collision in the same round - straightforward. Each agent performs simple random walk - we show this first. No collisions between rounds Ohad N. Feldheim Avoidance Coupling

  24. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 a m ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 m i ε i t − 1 2 i , Ohad N. Feldheim Avoidance Coupling

  25. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 a m ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 m i ε i t − 1 2 i , a n ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 1 · ε i t − 1 2 i Ohad N. Feldheim Avoidance Coupling

  26. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 a m ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 m i ε i t − 1 2 i , a n ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 t − 1 2 i = 0 , i =0 1 · ε i Ohad N. Feldheim Avoidance Coupling

  27. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 a m ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 m i ε i t − 1 2 i , a n ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 t − 1 2 i = 0 , i =0 1 · ε i i =0 ( m i − 1) ε i a m ( t − 1) ≡ � d − 1 t − 1 2 i . Ohad N. Feldheim Avoidance Coupling

  28. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 a m ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 m i ε i t − 1 2 i , a n ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 t − 1 2 i = 0 , i =0 1 · ε i i =0 ( m i − 1) ε i a m ( t − 1) ≡ � d − 1 t − 1 2 i . Thus a m ( t ) − a m ( t − 1) ≡ 2 d + δ t + � d − 1 t 2 i + � d − 1 i =0 m i ε i i =1 (1 − m i t − 1 ) ε i t − 1 2 i Ohad N. Feldheim Avoidance Coupling

  29. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 a m ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 m i ε i t − 1 2 i , a n ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 t − 1 2 i = 0 , i =0 1 · ε i i =0 ( m i − 1) ε i a m ( t − 1) ≡ � d − 1 t − 1 2 i . Thus a m ( t ) − a m ( t − 1) ≡ 2 d + δ t + � d − 1 t 2 i + � d − 1 i =0 m i ε i i =1 (1 − m i t − 1 ) ε i t − 1 2 i ≡ 2 d + δ t + � d − 1 i =0 b i ( t )2 i where b i are i.i.d. Bernoulli {− 1 , 1 } , Ohad N. Feldheim Avoidance Coupling

  30. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 a m ( t ) = 2 d + δ t + � m i ε i t 2 i , i =0 a m ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 i =0 m i ε i t − 1 2 i , a n ( t − 1) ≡ a n ( t − 2) + 2 d + δ t − 1 + � d − 1 t − 1 2 i = 0 , i =0 1 · ε i i =0 ( m i − 1) ε i a m ( t − 1) ≡ � d − 1 t − 1 2 i . Thus a m ( t ) − a m ( t − 1) ≡ 2 d + δ t + � d − 1 t 2 i + � d − 1 i =0 m i ε i i =1 (1 − m i t − 1 ) ε i t − 1 2 i ≡ 2 d + δ t + � d − 1 i =0 b i ( t )2 i where b i are i.i.d. Bernoulli {− 1 , 1 } , ≡ Unif { 1 . . . 2 d +1 } . Ohad N. Feldheim Avoidance Coupling

  31. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 We need to show: No collision in the same round - Done. Each agent performs simple random walk - Done. No collisions between rounds Ohad N. Feldheim Avoidance Coupling

  32. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Ohad N. Feldheim Avoidance Coupling

  33. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , Ohad N. Feldheim Avoidance Coupling

  34. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Ohad N. Feldheim Avoidance Coupling

  35. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Write ∆ i := m i ε i t + (1 − q i ) ε i t − 1 . Ohad N. Feldheim Avoidance Coupling

  36. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Write ∆ i := m i ε i t − 1 . Taking k = max i ( m i � = q i ), we have t + (1 − q i ) ε i m k = 0, q k = 1, Ohad N. Feldheim Avoidance Coupling

  37. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Write ∆ i := m i ε i t − 1 . Taking k = max i ( m i � = q i ), we have t + (1 − q i ) ε i m k = 0, q k = 1, and so,  1 i > k    | ∆ i | ≤ 0 i = k   2 i < k  Ohad N. Feldheim Avoidance Coupling

  38. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Write ∆ i := m i ε i t − 1 . Taking k = max i ( m i � = q i ), we have t + (1 − q i ) ε i m k = 0, q k = 1, and so,  1 i > k    i =2 2 i < 2 d ⇒ | δ t + � d − 1 i =1 ∆ i 2 i | < 1 + � d − 1 | ∆ i | ≤ 0 i = k   2 i < k  Ohad N. Feldheim Avoidance Coupling

  39. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Write ∆ i := m i ε i t − 1 . Taking k = max i ( m i � = q i ), we have t + (1 − q i ) ε i m k = 0, q k = 1, and so,  1 i > k    i =2 2 i < 2 d ⇒ | δ t + � d − 1 i =1 ∆ i 2 i | < 1 + � d − 1 | ∆ i | ≤ 0 i = k   2 i < k  Ohad N. Feldheim Avoidance Coupling

  40. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Write ∆ i := m i ε i t − 1 . Taking k = max i ( m i � = q i ), we have t + (1 − q i ) ε i m k = 0, q k = 1, and so,  1 i > k    i =2 2 i < 2 d ⇒ | δ t + � d − 1 i =1 ∆ i 2 i | < 1 + � d − 1 | ∆ i | ≤ 0 i = k   2 i < k  ⇒ a m ( t ) − a q ( t − 1) � = 0 . Ohad N. Feldheim Avoidance Coupling

  41. 2 d agents SAC on K 2 d +1 +1 - cont. n = 2 d , V = { 0 , . . . , 2 d +1 } , a n ( t − 1) = 0. m i := i -th binary digit of m . t . . . ε d − 1 ε 0 uniform { -1,1 } , δ t uniform { 0 , 1 } . t d − 1 d − 1 a m ( t ) = 2 d + δ t + � � m i ε i t 2 i , ( m i − 1) ε i t − 1 2 i . a m ( t − 1) ≡ i =1 i =1 Let m < q and recall that: a q ( t − 1) ≡ � d − 1 i =1 ( q i − 1) ε i t − 1 2 i , and thus: a m ( t ) − a q ( t − 1) ≡ 2 d + δ t + � d − 1 � m i ε i t + (1 − q i ) ε i � 2 i t − 1 i =1 Write ∆ i := m i ε i t − 1 . Taking k = max i ( m i � = q i ), we have t + (1 − q i ) ε i m k = 0, q k = 1, and so,  1 i > k    i =2 2 i < 2 d ⇒ | δ t + � d − 1 i =1 ∆ i 2 i | < 1 + � d − 1 | ∆ i | ≤ 0 i = k   2 i < k  ⇒ a m ( t ) − a q ( t − 1) � = 0 . Ohad N. Feldheim Avoidance Coupling

  42. 2 d agents SAC on K 2 d +1 - cont. And there is also an applet! (by David Wilson) http://dbwilson.com/avoidance.svg Ohad N. Feldheim Avoidance Coupling

  43. Monotonicity of Avoidance coupling on K n 2 3 0 1

  44. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: 2 1 0 3 Ohad N. Feldheim Avoidance Coupling

  45. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 2 but in changing order, 1 0 3 Ohad N. Feldheim Avoidance Coupling

  46. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 2 but in changing order, 1 Agents a 1 , . . . , a k are always moving in order , The agents never collide 0 3 Ohad N. Feldheim Avoidance Coupling

  47. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 2 but in changing order, 1 Agents a 1 , . . . , a k are always moving in order , The agents never collide The path of each agent is a 0 3 simple random walk. Ohad N. Feldheim Avoidance Coupling

  48. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 2 but in changing order, 1 0 Agents a 1 , . . . , a k are always moving in order , The agents never collide The path of each agent is a 3 simple random walk. Ohad N. Feldheim Avoidance Coupling

  49. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 2 3 but in changing order, 1 0 Agents a 1 , . . . , a k are always moving in order , The agents never collide The path of each agent is a simple random walk. Ohad N. Feldheim Avoidance Coupling

  50. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 2 3 but in changing order, 0 Agents a 1 , . . . , a k are always moving in order , 1 The agents never collide The path of each agent is a simple random walk. Ohad N. Feldheim Avoidance Coupling

  51. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 3 but in changing order, 0 2 Agents a 1 , . . . , a k are always moving in order , 1 The agents never collide The path of each agent is a simple random walk. Ohad N. Feldheim Avoidance Coupling

  52. Partly Ordered Simple Avoidance Coupling (POSAC) Let G = ( V , E ) be a finite graph (loops and multi-edges are OK). m agents, a 0 , . . . , a m − 1 moving on V , are said to form a k - POSAC if: The agents move one at a time 2 3 but in changing order, 0 Agents a 1 , . . . , a k are always moving in order , 1 The agents never collide The path of each agent is a simple random walk. Ohad N. Feldheim Avoidance Coupling

  53. * E F 3 E F 1 1 A D 2 A D 2 0 0 C B C B Theorem If there is a k -POSAC of m agents on K n , then there also is a k -POSAC of m + 1 agents on K n +1 . Ohad N. Feldheim Avoidance Coupling

  54. * E F 3 E F 1 1 A D 2 A D 2 0 0 C B C B Add a special vertex ∗ with a special disordered agent. Ohad N. Feldheim Avoidance Coupling

  55. * E F 3 E F 1 1 A D 2 A D 2 0 0 C B C B Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Ohad N. Feldheim Avoidance Coupling

  56. B E F 3 E F 1 1 A D 2 A D 2 0 0 C B * C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. Ohad N. Feldheim Avoidance Coupling

  57. B E F 3 E F 1 1 A D 2 A D 2 0 0 C B * C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. Ohad N. Feldheim Avoidance Coupling

  58. B E F 3 E F 1 0 1 0 A D 2 A D 2 C B * C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  59. B E F E F 1 0 1 0 A D 2 A D 2 3 C B * C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  60. B 2 E F E F 1 0 1 0 A D A D 2 3 C B * C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  61. B 2 E F E F 0 0 A D A D 1 2 1 3 C B * C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  62. B 2 E F * F 0 0 A D A D 1 2 1 3 C B E C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  63. B 2 E F * F 0 0 3 A D A D 1 2 1 C B E C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  64. B E F * F 0 2 0 3 A D A D 1 1 2 C B E C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  65. B E F * F 2 3 A D 0 A D 0 1 1 2 C B E C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  66. B 1 E F * F 2 3 A D 0 A D 0 1 2 C B E C Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels. As soon as ∗ clears - shift there the new agent. Ohad N. Feldheim Avoidance Coupling

  67. What is there to show? No collisions occur. Each walker makes a simple random walk. * 3 E F E F 1 1 A D 2 A D 2 0 0 B C C B Ohad N. Feldheim Avoidance Coupling

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend