counting permutations by congruence class of major index
play

Counting permutations by congruence class of major index H el` - PowerPoint PPT Presentation

Counting permutations by congruence class of major index H el` ene Barcelo (Arizona State University), Bruce Sagan (Michigan State University), and Sheila Sundaram (Bard College) www.math.msu.edu/ sagan March 20, 2006 The major index


  1. Counting permutations by congruence class of major index H´ el` ene Barcelo (Arizona State University), Bruce Sagan (Michigan State University), and Sheila Sundaram (Bard College) www.math.msu.edu/ ˜ sagan March 20, 2006

  2. The major index The inversion number Shuffles The case k = ℓ

  3. Outline The major index The inversion number Shuffles The case k = ℓ

  4. Let [ n ] = { 1 , 2 , . . . , n } , and S n = symmetric group of permutations of [ n ] .

  5. Let [ n ] = { 1 , 2 , . . . , n } , and S n = symmetric group of permutations of [ n ] . Then π = a 1 a 2 . . . a n ∈ S n has major index � maj π = i . a i > a i + 1

  6. Let [ n ] = { 1 , 2 , . . . , n } , and S n = symmetric group of permutations of [ n ] . Then π = a 1 a 2 . . . a n ∈ S n has major index � maj π = i . a i > a i + 1 π = 1 2 3 4 5 6 Ex. If 5 > 3 6 > 1 2 4

  7. Let [ n ] = { 1 , 2 , . . . , n } , and S n = symmetric group of permutations of [ n ] . Then π = a 1 a 2 . . . a n ∈ S n has major index � maj π = i . a i > a i + 1 π = 1 2 3 4 5 6 Ex. If then 5 > 3 6 > 1 2 4 maj π = 2 + 4 = 6 .

  8. Let [ n ] = { 1 , 2 , . . . , n } , and S n = symmetric group of permutations of [ n ] . Then π = a 1 a 2 . . . a n ∈ S n has major index � maj π = i . a i > a i + 1 π = 1 2 3 4 5 6 Ex. If then 5 > 3 6 > 1 2 4 maj π = 2 + 4 = 6 . Theorem If q is an indeterminate then q maj π = 1 ( 1 + q )( 1 + q + q 2 ) · · · ( 1 + q + · · · + q n − 1 ) . � π ∈ S n

  9. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ

  10. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ Ex. Suppose n = 5.

  11. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ Ex. Suppose n = 5. Theorem If k , ℓ ≤ n and gcd ( k , ℓ ) = 1 then n ( i , j ) = n ! m k ,ℓ ∀ i , j . k ℓ

  12. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ Ex. Suppose n = 5. Theorem If k , ℓ ≤ n and gcd ( k , ℓ ) = 1 then n ( i , j ) = n ! m k ,ℓ ∀ i , j . k ℓ History. Implicit in GORDON (1963) and ROSELLE (1974).

  13. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ Ex. Suppose n = 5. Theorem If k , ℓ ≤ n and gcd ( k , ℓ ) = 1 then n ( i , j ) = n ! m k ,ℓ ∀ i , j . k ℓ History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002).

  14. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ Ex. Suppose n = 5. Theorem If k , ℓ ≤ n and gcd ( k , ℓ ) = 1 then n ( i , j ) = n ! m k ,ℓ ∀ i , j . k ℓ History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002). Combinatorial Proof (BSS) m 1 ,ℓ (1) Prove the special case k = 1: n ( i , j ) = n ! /ℓ ∀ i , j .

  15. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ Ex. Suppose n = 5. Theorem If k , ℓ ≤ n and gcd ( k , ℓ ) = 1 then n ( i , j ) = n ! m k ,ℓ ∀ i , j . k ℓ History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002). Combinatorial Proof (BSS) m 1 ,ℓ (1) Prove the special case k = 1: n ( i , j ) = n ! /ℓ ∀ i , j . m n ,ℓ (2) Use (1) to prove the case k = n : n ( i , j ) = n ! / ( n ℓ ) ∀ i , j .

  16. Given k , ℓ we let m k ,ℓ be the k × ℓ matrix with ( i , j ) entry n n ( i , j ) = # { π ∈ S n : maj π ≡ i ( mod k ) , maj π − 1 ≡ j ( mod ℓ ) } . m k ,ℓ Ex. Suppose n = 5. Theorem If k , ℓ ≤ n and gcd ( k , ℓ ) = 1 then n ( i , j ) = n ! m k ,ℓ ∀ i , j . k ℓ History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002). Combinatorial Proof (BSS) m 1 ,ℓ (1) Prove the special case k = 1: n ( i , j ) = n ! /ℓ ∀ i , j . m n ,ℓ (2) Use (1) to prove the case k = n : n ( i , j ) = n ! / ( n ℓ ) ∀ i , j . (3) Use (2) and induction on n to prove the final case n > k .

  17. Outline The major index The inversion number Shuffles The case k = ℓ

  18. imaj π = maj π − 1 . Let

  19. imaj π = maj π − 1 . Let Ex. If π = 1 2 3 4 5 6 4 then π − 1 = 1 2 3 4 5 6 2 5 3 6 1 5 > 1 3 6 > 2 4

  20. imaj π = maj π − 1 . Let Ex. If π = 1 2 3 4 5 6 4 then π − 1 = 1 2 3 4 5 6 2 5 3 6 1 5 > 1 3 6 > 2 4 ∴ imaj π = 1 + 4

  21. imaj π = maj π − 1 . Let Ex. If π = 1 2 3 4 5 4 then π − 1 = 1 6 2 3 4 5 6 2 5 3 6 1 5 > 1 3 6 > 2 4 � ∴ imaj π = 1 + 4 = i . i + 1 left of i

  22. imaj π = maj π − 1 . Let Ex. If π = 1 2 3 4 5 4 then π − 1 = 1 6 2 3 4 5 6 2 5 3 6 1 5 > 1 3 6 > 2 4 � ∴ imaj π = 1 + 4 = i . i + 1 left of i The inversion number of π is inv π = # { ( a i , a j ) : i < j and a i > a j } .

  23. imaj π = maj π − 1 . Let Ex. If π = 1 2 3 4 5 4 then π − 1 = 1 6 2 3 4 5 6 2 5 3 6 1 5 > 1 3 6 > 2 4 � ∴ imaj π = 1 + 4 = i . i + 1 left of i inv π = # { 21 , 53 , 51 , 54 , 31 , 61 , 64 } = 7 . The inversion number of π is inv π = # { ( a i , a j ) : i < j and a i > a j } .

  24. imaj π = maj π − 1 . Let Ex. If π = 1 2 3 4 5 4 then π − 1 = 1 6 2 3 4 5 6 2 5 3 6 1 5 > 1 3 6 > 2 4 � ∴ imaj π = 1 + 4 = i . i + 1 left of i inv π = # { 21 , 53 , 51 , 54 , 31 , 61 , 64 } = 7 . The inversion number of π is inv π = # { ( a i , a j ) : i < j and a i > a j } . Theorem q inv π = 1 ( 1 + q )( 1 + q + q 2 ) · · · ( 1 + q + · · · + q n − 1 ) . � π ∈ S n

  25. imaj π = maj π − 1 . Let Ex. If π = 1 2 3 4 5 4 then π − 1 = 1 6 2 3 4 5 6 2 5 3 6 1 5 > 1 3 6 > 2 4 � ∴ imaj π = 1 + 4 = i . i + 1 left of i inv π = # { 21 , 53 , 51 , 54 , 31 , 61 , 64 } = 7 . The inversion number of π is inv π = # { ( a i , a j ) : i < j and a i > a j } . Theorem q inv π = 1 ( 1 + q )( 1 + q + q 2 ) · · · ( 1 + q + · · · + q n − 1 ) . � π ∈ S n We say maj and inv are equidistributed, i.e., have the same generating function. So are ( maj , imaj ) and ( inv , imaj ) .

  26. n ( i , j ) = n ! n ( i , j ) = n ! Proof of (2): If m 1 ,ℓ m n ,ℓ then ( ∀ i , j ) . ℓ n ℓ

  27. n ( i , j ) = n ! n ( i , j ) = n ! Proof of (2): If m 1 ,ℓ m n ,ℓ then ( ∀ i , j ) . ℓ n ℓ Let M k ,ℓ n ( i , j ) = { π ∈ S n : inv π ≡ i ( mod k ) , imaj π ≡ j ( mod ℓ ) } .

  28. n ( i , j ) = n ! n ( i , j ) = n ! Proof of (2): If m 1 ,ℓ m n ,ℓ then ( ∀ i , j ) . ℓ n ℓ Let M k ,ℓ n ( i , j ) = { π ∈ S n : inv π ≡ i ( mod k ) , imaj π ≡ j ( mod ℓ ) } . ∴ m k ,ℓ n ( i , j ) = # M k ,ℓ n ( i , j ) .

  29. n ( i , j ) = n ! n ( i , j ) = n ! Proof of (2): If m 1 ,ℓ m n ,ℓ then ( ∀ i , j ) . ℓ n ℓ Let M k ,ℓ n ( i , j ) = { π ∈ S n : inv π ≡ i ( mod k ) , imaj π ≡ j ( mod ℓ ) } . ∴ m k ,ℓ n ( i , j ) = # M k ,ℓ n ( i , j ) . Let M ( i , j ) = M n ,ℓ n ( i , j ) and m ( i , j ) = # M ( i , j ) .

  30. n ( i , j ) = n ! n ( i , j ) = n ! Proof of (2): If m 1 ,ℓ m n ,ℓ then ( ∀ i , j ) . ℓ n ℓ Let M k ,ℓ n ( i , j ) = { π ∈ S n : inv π ≡ i ( mod k ) , imaj π ≡ j ( mod ℓ ) } . ∴ m k ,ℓ n ( i , j ) = # M k ,ℓ n ( i , j ) . Let M ( i , j ) = M n ,ℓ n ( i , j ) and m ( i , j ) = # M ( i , j ) . It suffices to find a bijection M ( i , j ) ← → M ( i + 1 , j ) ∀ i , j

  31. n ( i , j ) = n ! n ( i , j ) = n ! Proof of (2): If m 1 ,ℓ m n ,ℓ then ( ∀ i , j ) . ℓ n ℓ Let M k ,ℓ n ( i , j ) = { π ∈ S n : inv π ≡ i ( mod k ) , imaj π ≡ j ( mod ℓ ) } . ∴ m k ,ℓ n ( i , j ) = # M k ,ℓ n ( i , j ) . Let M ( i , j ) = M n ,ℓ n ( i , j ) and m ( i , j ) = # M ( i , j ) . It suffices to find a bijection M ( i , j ) ← → M ( i + 1 , j ) ∀ i , j since then m ( 1 , j ) = m ( 2 , j ) = . . . = m ( n , j ) .

  32. n ( i , j ) = n ! n ( i , j ) = n ! Proof of (2): If m 1 ,ℓ m n ,ℓ then ( ∀ i , j ) . ℓ n ℓ Let M k ,ℓ n ( i , j ) = { π ∈ S n : inv π ≡ i ( mod k ) , imaj π ≡ j ( mod ℓ ) } . ∴ m k ,ℓ n ( i , j ) = # M k ,ℓ n ( i , j ) . Let M ( i , j ) = M n ,ℓ n ( i , j ) and m ( i , j ) = # M ( i , j ) . It suffices to find a bijection M ( i , j ) ← → M ( i + 1 , j ) ∀ i , j since then m ( 1 , j ) = m ( 2 , j ) = . . . = m ( n , j ) . Also, m ( 1 , j ) + m ( 2 , j ) + · · · + m ( n , j )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend