alternating permutations
play

Alternating Permutations Richard P. Stanley M.I.T. Alternating - PowerPoint PPT Presentation

Alternating Permutations Richard P. Stanley M.I.T. Alternating Permutations p. 1 Definitions A sequence a 1 , a 2 , . . . , a k of distinct integers is alternating if a 1 > a 2 < a 3 > a 4 < , and reverse alternating if


  1. Alternating Permutations Richard P. Stanley M.I.T. Alternating Permutations – p. 1

  2. Definitions A sequence a 1 , a 2 , . . . , a k of distinct integers is alternating if a 1 > a 2 < a 3 > a 4 < · · · , and reverse alternating if a 1 < a 2 > a 3 < a 4 > · · · . Alternating Permutations – p. 2

  3. Definitions A sequence a 1 , a 2 , . . . , a k of distinct integers is alternating if a 1 > a 2 < a 3 > a 4 < · · · , and reverse alternating if a 1 < a 2 > a 3 < a 4 > · · · . S n : symmetric group of all permutations of 1 , 2 , . . . , n Alternating Permutations – p. 2

  4. E n E n = # { w ∈ S n : w is alternating } = # { w ∈ S n : w is reverse alternating } via a 1 a 2 · · · a n �→ n + 1 − a 1 , n + 1 − a 2 , . . . , n + 1 − a n Alternating Permutations – p. 3

  5. E n E n = # { w ∈ S n : w is alternating } = # { w ∈ S n : w is reverse alternating } via a 1 a 2 · · · a n �→ n + 1 − a 1 , n + 1 − a 2 , . . . , n + 1 − a n E.g., E 4 = 5 : 2143, 3142, 3241, 4132, 4231 Alternating Permutations – p. 3

  6. André’s theorem Theorem (Désiré André, 1879) x n � y := E n n ! = sec x + tan x n ≥ 0 Alternating Permutations – p. 4

  7. André’s theorem Theorem (Désiré André, 1879) x n � y := E n n ! = sec x + tan x n ≥ 0 E n is an Euler number , E 2 n a secant number , E 2 n − 1 a tangent number . Alternating Permutations – p. 4

  8. Naive proof 52439 1 826 � �� � ���� ← − − → alternating alternating Alternating Permutations – p. 5

  9. Naive proof 52439 1 826 � �� � ���� ← − − → alternating alternating Obtain w that is either alternating or reverse alternating. Alternating Permutations – p. 5

  10. Naive proof 52439 1 826 � �� � ���� ← − − → alternating alternating Obtain w that is either alternating or reverse alternating. n � n � � ⇒ 2 E n +1 = E k E n − k , n ≥ 1 k k =0 Alternating Permutations – p. 5

  11. Completion of proof n � n � � E k E n − k , n ≥ 1 2 E n +1 = k k =0 Alternating Permutations – p. 6

  12. Completion of proof n � n � � E k E n − k , n ≥ 1 2 E n +1 = k k =0 x n � = 2 y ′ 2 E n +1 n ! n ≥ 0 � n � � n � x n � � = 1 + y 2 E k E n − k k n ! n ≥ 0 k =0 Alternating Permutations – p. 6

  13. Completion of proof n � n � � E k E n − k , n ≥ 1 2 E n +1 = k k =0 x n � = 2 y ′ 2 E n +1 n ! n ≥ 0 � n � � n � x n � � = 1 + y 2 E k E n − k k n ! n ≥ 0 k =0 ⇒ 2 y ′ = 1 + y 2 , etc . Alternating Permutations – p. 6

  14. A generalization ∃ more sophisticated approaches. E.g., let f k ( n ) = # { w ∈ S n : w ( r ) < w ( r + 1) ⇔ k | r } f 2 ( n ) = E n Alternating Permutations – p. 7

  15. A generalization ∃ more sophisticated approaches. E.g., let f k ( n ) = # { w ∈ S n : w ( r ) < w ( r + 1) ⇔ k | r } f 2 ( n ) = E n Theorem. �� � − 1 f k ( kn ) x kn ( − 1) n x kn � ( kn )! = . ( kn )! n ≥ 0 k ≥ 0 Alternating Permutations – p. 7

  16. Combinatorial trigonometry Define sec x and tan x by x n � sec x + tan x = E n n ! . n ≥ 0 Alternating Permutations – p. 8

  17. Combinatorial trigonometry Define sec x and tan x by x n � sec x + tan x = E n n ! . n ≥ 0 Exercise. sec 2 x = 1 + tan 2 x Alternating Permutations – p. 8

  18. Combinatorial trigonometry Define sec x and tan x by x n � sec x + tan x = E n n ! . n ≥ 0 Exercise. sec 2 x = 1 + tan 2 x tan x + tan y Exercise. tan( x + y ) = 1 − (tan x )(tan y ) Alternating Permutations – p. 8

  19. Some occurences of Euler numbers (1) E 2 n − 1 is the number of complete increasing binary trees on the vertex set [2 n + 1] = { 1 , 2 , . . . , 2 n + 1 } . Alternating Permutations – p. 9

  20. Five vertices 1 1 1 1 1 1 2 2 2 2 2 2 5 3 5 5 4 5 3 4 3 3 3 4 4 3 4 5 5 4 1 1 1 1 1 1 3 3 2 2 2 2 2 2 4 4 5 5 4 5 5 4 3 5 5 3 3 4 4 3 1 1 1 1 3 3 2 2 2 4 2 3 3 5 5 4 4 5 5 4 Alternating Permutations – p. 10

  21. Five vertices 1 1 1 1 1 1 2 2 2 2 2 2 5 3 5 5 4 5 3 4 3 3 3 4 4 3 4 5 5 4 1 1 1 1 1 1 3 3 2 2 2 2 2 2 4 4 5 5 4 5 5 4 3 5 5 3 3 4 4 3 1 1 1 1 3 3 2 2 2 4 2 3 3 5 5 4 4 5 5 4 Slightly more complicated for E 2 n Alternating Permutations – p. 10

  22. Simsun permutations Definition. A permutation w = a 1 · · · a n ∈ S n is simsun if for all 1 ≤ k ≤ n , the restriction b 1 · · · b k of w to 1 , 2 , . . . , k has no double descents b i − 1 > b i > b i +1 . Alternating Permutations – p. 11

  23. Simsun permutations Definition. A permutation w = a 1 · · · a n ∈ S n is simsun if for all 1 ≤ k ≤ n , the restriction b 1 · · · b k of w to 1 , 2 , . . . , k has no double descents b i − 1 > b i > b i +1 . Example. 346251 is not simsun: restriction to 1 , 2 , 3 , 4 is 3 421 . Alternating Permutations – p. 11

  24. Simsun permutations Definition. A permutation w = a 1 · · · a n ∈ S n is simsun if for all 1 ≤ k ≤ n , the restriction b 1 · · · b k of w to 1 , 2 , . . . , k has no double descents b i − 1 > b i > b i +1 . Example. 346251 is not simsun: restriction to 1 , 2 , 3 , 4 is 3 421 . Theorem (R. Sim ion and S. Sun daram) The number of simsun permutations w ∈ S n is E n . Alternating Permutations – p. 11

  25. Chains of partitions (2) Start with n one-element sets { 1 } , . . . , { n } . Alternating Permutations – p. 12

  26. Chains of partitions (2) Start with n one-element sets { 1 } , . . . , { n } . Merge together two at a time until reaching { 1 , 2 , . . . , n } . Alternating Permutations – p. 12

  27. Chains of partitions (2) Start with n one-element sets { 1 } , . . . , { n } . Merge together two at a time until reaching { 1 , 2 , . . . , n } . 1 − 2 − 3 − 4 − 5 − 6 , 12 − 3 − 4 − 5 − 6 , 12 − 34 − 5 − 6 125 − 34 − 6 , 125 − 346 , 123456 Alternating Permutations – p. 12

  28. Chains of partitions (2) Start with n one-element sets { 1 } , . . . , { n } . Merge together two at a time until reaching { 1 , 2 , . . . , n } . 1 − 2 − 3 − 4 − 5 − 6 , 12 − 3 − 4 − 5 − 6 , 12 − 34 − 5 − 6 125 − 34 − 6 , 125 − 346 , 123456 S n acts on these chains. Alternating Permutations – p. 12

  29. Chains of partitions (2) Start with n one-element sets { 1 } , . . . , { n } . Merge together two at a time until reaching { 1 , 2 , . . . , n } . 1 − 2 − 3 − 4 − 5 − 6 , 12 − 3 − 4 − 5 − 6 , 12 − 34 − 5 − 6 125 − 34 − 6 , 125 − 346 , 123456 S n acts on these chains. Theorem. The number of S n -orbits is E n 1 . − Alternating Permutations – p. 12

  30. Orbit representatives for n = 5 12 − 3 − 4 − 5 123 − 4 − 5 1234 − 5 12 − 3 − 4 − 5 123 − 4 − 5 123 − 45 12 − 3 − 4 − 5 12 − 34 − 5 125 − 34 12 − 3 − 4 − 5 12 − 34 − 5 12 − 345 12 − 3 − 4 − 5 12 − 34 − 5 1234 − 5 Alternating Permutations – p. 13

  31. A polytope volume Let P n be the convex polytope in R n with equations x i ≥ 0 , 1 ≤ i ≤ n x i + x i +1 ≤ 1 , 1 ≤ i ≤ n − 1 . Alternating Permutations – p. 14

  32. A polytope volume Let P n be the convex polytope in R n with equations x i ≥ 0 , 1 ≤ i ≤ n x i + x i +1 ≤ 1 , 1 ≤ i ≤ n − 1 . Theorem. vol ( P n ) = 1 n ! E n Alternating Permutations – p. 14

  33. Ulam’s problem Let E ( n ) be the expected length is ( w ) of the longest increasing subsequence of w . Alternating Permutations – p. 15

  34. Ulam’s problem Let E ( n ) be the expected length is ( w ) of the longest increasing subsequence of w . w = 5 24 1 7 36 ⇒ is( w ) = 3 Alternating Permutations – p. 15

  35. Two highlights Long story . . . Alternating Permutations – p. 16

  36. Two highlights Long story . . . Logan-Shepp, Vershik-Kerov: E ( n ) ∼ 2 √ n Alternating Permutations – p. 16

  37. Two highlights Long story . . . Logan-Shepp, Vershik-Kerov: E ( n ) ∼ 2 √ n Write is n ( w ) for is( w ) when w ∈ S n . Baik-Deift-Johansson: � is n ( w ) − 2 √ n � ≤ t n →∞ Prob lim = F ( t ) , n 1 / 6 the Tracy-Widom distribution . Alternating Permutations – p. 16

  38. Alternating subsequences? as( w ) = length of longest alternating subseq. of w w = 5 6 2 1 834 7 ⇒ as( w ) = 5 Alternating Permutations – p. 17

  39. The main lemma MAIN LEMMA. ∀ w ∈ S n ∃ alternating subsequence of maximal length that contains n . Alternating Permutations – p. 18

  40. The main lemma MAIN LEMMA. ∀ w ∈ S n ∃ alternating subsequence of maximal length that contains n . a k ( n ) = # { w ∈ S n : as( w ) = k } b k ( n ) = a 1 ( n ) + a 2 ( n ) + · · · + a k ( n ) = # { w ∈ S n : as( w ) ≤ k } . Alternating Permutations – p. 18

  41. Recurrence for a k ( n ) n � n − 1 � � ⇒ a k ( n ) = j − 1 j =1 � ( a 2 r ( j − 1) + a 2 r +1 ( j − 1)) a s ( n − j ) 2 r + s = k − 1 Alternating Permutations – p. 19

  42. The main generating function b k ( n ) t k x n � Define B ( x, t ) = n ! k,n ≥ 0 Theorem. 2 /ρ t e ρx − 1 B ( x, t ) = ρ, 1 − 1 − ρ √ 1 − t 2 . where ρ = Alternating Permutations – p. 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend