alternating permutations
play

Alternating Permutations Richard P. Stanley M.I.T. Alternating - PowerPoint PPT Presentation

Alternating Permutations Richard P. Stanley M.I.T. Alternating Permutations p. 1 Basic definitions A sequence a 1 , a 2 , . . . , a k of distinct integers is alternating if a 1 > a 2 < a 3 > a 4 < , and reverse


  1. Orbits of mergings (2) Start with n one-element sets { 1 } , . . . , { n } . Merge together two at a time until reaching { 1 , 2 , . . . , n } . 1 − 2 − 3 − 4 − 5 − 6 , 12 − 3 − 4 − 5 − 6 , 12 − 34 − 5 − 6 125 − 34 − 6 , 125 − 346 , 123456 S n acts on these sequences. Theorem. The number of S n -orbits is E n 1 . − Alternating Permutations – p. 17

  2. Orbits of mergings (2) Start with n one-element sets { 1 } , . . . , { n } . Merge together two at a time until reaching { 1 , 2 , . . . , n } . 1 − 2 − 3 − 4 − 5 − 6 , 12 − 3 − 4 − 5 − 6 , 12 − 34 − 5 − 6 125 − 34 − 6 , 125 − 346 , 123456 S n acts on these sequences. Theorem. The number of S n -orbits is E n 1 . − Proof. Alternating Permutations – p. 17

  3. Orbits of mergings (2) Start with n one-element sets { 1 } , . . . , { n } . Merge together two at a time until reaching { 1 , 2 , . . . , n } . 1 − 2 − 3 − 4 − 5 − 6 , 12 − 3 − 4 − 5 − 6 , 12 − 34 − 5 − 6 125 − 34 − 6 , 125 − 346 , 123456 S n acts on these sequences. Theorem. The number of S n -orbits is E n 1 . − Proof. Exercise. Alternating Permutations – p. 17

  4. Orbit representatives for n = 5 12 − 3 − 4 − 5 123 − 4 − 5 1234 − 5 12 − 3 − 4 − 5 123 − 4 − 5 123 − 45 12 − 3 − 4 − 5 12 − 34 − 5 125 − 34 12 − 3 − 4 − 5 12 − 34 − 5 12 − 345 12 − 3 − 4 − 5 12 − 34 − 5 1234 − 5 Alternating Permutations – p. 18

  5. Volume of a polytope (3) Let E n be the convex polytope in R n defined by x i ≥ 0 , 1 ≤ i ≤ n x i + x i +1 ≤ 1 , 1 ≤ i ≤ n − 1 . Alternating Permutations – p. 19

  6. Volume of a polytope (3) Let E n be the convex polytope in R n defined by x i ≥ 0 , 1 ≤ i ≤ n x i + x i +1 ≤ 1 , 1 ≤ i ≤ n − 1 . Theorem. The volume of E n is E n /n ! . Alternating Permutations – p. 19

  7. Naive proof � 1 � 1 − x 1 � 1 − x 2 � 1 − x n − 1 vol( E n ) = · · · dx 1 dx 2 · · · dx n x 1 =0 x 2 =0 x 3 =0 x n =0 Alternating Permutations – p. 20

  8. Naive proof � 1 � 1 − x 1 � 1 − x 2 � 1 − x n − 1 vol( E n ) = · · · dx 1 dx 2 · · · dx n x 1 =0 x 2 =0 x 3 =0 x n =0 � t � 1 − x 1 � 1 − x 2 � 1 − x n − 1 f n ( t ) := · · · dx 1 dx 2 · · · dx n x 1 =0 x 2 =0 x 3 =0 x n =0 Alternating Permutations – p. 20

  9. Naive proof � 1 � 1 − x 1 � 1 − x 2 � 1 − x n − 1 vol( E n ) = · · · dx 1 dx 2 · · · dx n x 1 =0 x 2 =0 x 3 =0 x n =0 � t � 1 − x 1 � 1 − x 2 � 1 − x n − 1 f n ( t ) := · · · dx 1 dx 2 · · · dx n x 1 =0 x 2 =0 x 3 =0 x n =0 � 1 − t � 1 − x 2 � 1 − x n − 1 f ′ n ( t ) = · · · dx 2 dx 3 · · · dx n x 2 =0 x 3 =0 x n =0 = f n − 1 (1 − t ) . Alternating Permutations – p. 20

  10. F ( y ) f ′ n ( t ) = f n − 1 (1 − t ) , f 0 ( t ) = 1 , f n (0) = 0 ( n > 0) Alternating Permutations – p. 21

  11. F ( y ) f ′ n ( t ) = f n − 1 (1 − t ) , f 0 ( t ) = 1 , f n (0) = 0 ( n > 0) � f n ( t ) y n F ( y ) = n ≥ 0 ⇒ ∂ 2 ∂t 2 F ( y ) = − y 2 F ( y ) , etc. Alternating Permutations – p. 21

  12. Conclusion of proof F ( y ) = (sec y )(cos( t − 1) y + sin ty ) ⇒ F ( y ) | t =1 = sec y + tan y. Alternating Permutations – p. 22

  13. Tridiagonal matrices An n × n matrix M = ( m ij ) is tridiagonal if m ij = 0 whenever | i − j | ≥ 2 . doubly-stochastic : m ij ≥ 0 , row and column sums equal 1 T n : set of n × n tridiagonal doubly stochastic matrices Alternating Permutations – p. 23

  14. Polytope structure of T n Easy fact: the map T n → R n − 1 M �→ ( m 12 , m 23 , . . . , m n − 1 ,n ) is a (linear) bijection from T to E n − 1 . Alternating Permutations – p. 24

  15. Polytope structure of T n Easy fact: the map T n → R n − 1 M �→ ( m 12 , m 23 , . . . , m n − 1 ,n ) is a (linear) bijection from T to E n − 1 . Application ( Diaconis et al.): random doubly stochastic tridiagonal matrices and random walks on T n Alternating Permutations – p. 24

  16. A modification Let F n be the convex polytope in R n defined by x i ≥ 0 , 1 ≤ i ≤ n x i + x i +1 + x i +2 ≤ 1 , 1 ≤ i ≤ n − 2 . V n = vol( F n ) Alternating Permutations – p. 25

  17. A modification Let F n be the convex polytope in R n defined by x i ≥ 0 , 1 ≤ i ≤ n x i + x i +1 + x i +2 ≤ 1 , 1 ≤ i ≤ n − 2 . V n = vol( F n ) n 1–3 4 5 6 7 8 9 10 n ! V n 1 2 5 14 47 182 786 3774 Alternating Permutations – p. 25

  18. A “naive” recurrence V n = f n (1 , 1) , where f 0 ( a, b ) = 1 , f n (0 , b ) = 0 for n > 0 ∂ ∂af n ( a, b ) = f n − 1 ( b − a, 1 − a ) . Alternating Permutations – p. 26

  19. f n ( a, b ) for n ≤ 3 f 1 ( a, b ) = a f 2 ( a, b ) = 1 2(2 ab − a 2 ) f 3 ( a, b ) = 1 6( a 3 − 3 a 2 − 3 ab 2 + 6 ab ) Alternating Permutations – p. 27

  20. f n ( a, b ) for n ≤ 3 f 1 ( a, b ) = a f 2 ( a, b ) = 1 2(2 ab − a 2 ) f 3 ( a, b ) = 1 6( a 3 − 3 a 2 − 3 ab 2 + 6 ab ) Is there a “nice” generating function for f n ( a, b ) or V n = f n (1 , 1) ? Alternating Permutations – p. 27

  21. Distribution of is ( w ) is( w ) = length of longest increasing subsequence of w ∈ S n Alternating Permutations – p. 28

  22. Distribution of is ( w ) is( w ) = length of longest increasing subsequence of w ∈ S n is(48361572) = 3 Alternating Permutations – p. 28

  23. Distribution of is ( w ) is( w ) = length of longest increasing subsequence of w ∈ S n is( 4 83 6 15 7 2) = 3 Alternating Permutations – p. 28

  24. Distribution of is ( w ) is( w ) = length of longest increasing subsequence of w ∈ S n is( 4 83 6 15 7 2) = 3 Vershik-Kerov, Logan-Shepp: 1 � E ( n ) := is( w ) n ! w ∈ S n 2 √ n ∼ Alternating Permutations – p. 28

  25. Limiting distribution of is ( w ) Baik-Deift-Johansson: For fixed t ∈ R , � is n ( w ) − 2 √ n � n →∞ Prob lim ≤ t = F ( t ) , n 1 / 6 the Tracy-Widom distribution . Alternating Permutations – p. 29

  26. Alternating analogues Length of longest alternating subsequence of w ∈ S n Alternating Permutations – p. 30

  27. Alternating analogues Length of longest alternating subsequence of w ∈ S n Length of longest increasing subsequence of an alternating permutation w ∈ S n . Alternating Permutations – p. 30

  28. Alternating analogues Length of longest alternating subsequence of w ∈ S n Length of longest increasing subsequence of an alternating permutation w ∈ S n . The first is much easier! Alternating Permutations – p. 30

  29. Longest alternating subsequences as( w ) = length of longest alt. subseq. of w w = 5 6 2 1 834 7 ⇒ as( w ) = 5 Alternating Permutations – p. 31

  30. Longest alternating subsequences as( w ) = length of longest alt. subseq. of w w = 5 6 2 1 834 7 ⇒ as( w ) = 5 D ( n ) = 1 � as( w ) ∼ ? n ! w ∈ S n Alternating Permutations – p. 31

  31. Definitions of a k ( n ) and b k ( n ) a k ( n ) = # { w ∈ S n : as( w ) = k } b k ( n ) = a 1 ( n ) + a 2 ( n ) + · · · + a k ( n ) = # { w ∈ S n : as( w ) ≤ k } Alternating Permutations – p. 32

  32. The case n = 3 w as( w ) 1 23 1 1 32 2 213 3 2 3 1 2 312 3 3 2 1 2 Alternating Permutations – p. 33

  33. The case n = 3 w as( w ) 1 23 1 1 32 2 213 3 2 3 1 2 312 3 3 2 1 2 a 1 (3) = 1 , a 2 (3) = 3 , a 3 (3) = 2 b 1 (3) = 1 , b 2 (3) = 4 , b 3 (3) = 6 Alternating Permutations – p. 33

  34. The main lemma Lemma. ∀ w ∈ S n ∃ alternating subsequence of maximal length that contains n . Alternating Permutations – p. 34

  35. The main lemma Lemma. ∀ w ∈ S n ∃ alternating subsequence of maximal length that contains n . Corollary. n � n − 1 � � ⇒ a k ( n ) = j − 1 j =1 � ( a 2 r ( j − 1) + a 2 r +1 ( j − 1)) a s ( n − j ) 2 r + s = k − 1 Alternating Permutations – p. 34

  36. The main generating function b k ( n ) t k x n � B ( x, t ) = n ! k,n ≥ 0 Theorem. 2 /ρ t e ρx − 1 B ( x, t ) = ρ, 1 − 1 − ρ √ 1 − t 2 . where ρ = Alternating Permutations – p. 35

  37. Formulas for b k ( n ) Corollary. ⇒ b 1 ( n ) = 1 b 2 ( n ) = n 4 (3 n − 2 n + 3) 1 b 3 ( n ) = 8 (4 n − (2 n − 4)2 n ) 1 b 4 ( n ) = . . . Alternating Permutations – p. 36

  38. Formulas for b k ( n ) Corollary. ⇒ b 1 ( n ) = 1 b 2 ( n ) = n 4 (3 n − 2 n + 3) 1 b 3 ( n ) = 8 (4 n − (2 n − 4)2 n ) 1 b 4 ( n ) = . . . no such formulas for longest increasing subsequences Alternating Permutations – p. 36

  39. Mean (expectation) of as( w ) n D ( n ) = 1 as( w ) = 1 � � k · a k ( n ) , n ! n ! w ∈ S n k =1 the expectation of as( w ) for w ∈ S n Alternating Permutations – p. 37

  40. Mean (expectation) of as( w ) n D ( n ) = 1 as( w ) = 1 � � k · a k ( n ) , n ! n ! w ∈ S n k =1 the expectation of as( w ) for w ∈ S n Let a k ( n ) t k x n � A ( x, t ) = n ! = (1 − t ) B ( x, t ) k,n ≥ 0 � � 2 /ρ t e ρx − 1 = (1 − t ) . 1 − 1 − ρ ρ Alternating Permutations – p. 37

  41. Formula for D ( n ) ∂ D ( n ) x n = � ∂tA ( x, 1) n ≥ 0 = 6 x − 3 x 2 + x 3 6(1 − x ) 2 4 n + 1 � x n . = x + 6 n ≥ 2 Alternating Permutations – p. 38

  42. Formula for D ( n ) ∂ D ( n ) x n = � ∂tA ( x, 1) n ≥ 0 = 6 x − 3 x 2 + x 3 6(1 − x ) 2 4 n + 1 � x n . = x + 6 n ≥ 2 ⇒ D ( n ) = 4 n + 1 , n ≥ 2 6 Alternating Permutations – p. 38

  43. Formula for D ( n ) ∂ D ( n ) x n = � ∂tA ( x, 1) n ≥ 0 = 6 x − 3 x 2 + x 3 6(1 − x ) 2 4 n + 1 � x n . = x + 6 n ≥ 2 ⇒ D ( n ) = 4 n + 1 , n ≥ 2 6 Compare E ( n ) ∼ 2 √ n . Alternating Permutations – p. 38

  44. Variance of as( w ) � 2 � V ( n ) = 1 as( w ) − 4 n + 1 � , n ≥ 2 n ! 6 w ∈ S n the variance of as( w ) for w ∈ S n Alternating Permutations – p. 39

  45. Variance of as( w ) � 2 � V ( n ) = 1 as( w ) − 4 n + 1 � , n ≥ 2 n ! 6 w ∈ S n the variance of as( w ) for w ∈ S n Corollary. V ( n ) = 8 45 n − 13 180 , n ≥ 4 Alternating Permutations – p. 39

  46. Variance of as( w ) � 2 � V ( n ) = 1 as( w ) − 4 n + 1 � , n ≥ 2 n ! 6 w ∈ S n the variance of as( w ) for w ∈ S n Corollary. V ( n ) = 8 45 n − 13 180 , n ≥ 4 similar results for higher moments Alternating Permutations – p. 39

  47. A new distribution? � as( w ) − 2 n/ 3 � √ n P ( t ) = lim n →∞ Prob w ∈ S n ≤ t Alternating Permutations – p. 40

  48. A new distribution? � as( w ) − 2 n/ 3 � √ n P ( t ) = lim n →∞ Prob w ∈ S n ≤ t Stanley distribution? Alternating Permutations – p. 40

  49. Limiting distribution Theorem (Pemantle, Widom, (Wilf)). � as( w ) − 2 n/ 3 � √ n n →∞ Prob w ∈ S n lim ≤ t √ � t 45 / 4 1 e − s 2 ds √ π = −∞ (Gaussian distribution) Alternating Permutations – p. 41

  50. Limiting distribution Theorem (Pemantle, Widom, (Wilf)). � as( w ) − 2 n/ 3 � √ n n →∞ Prob w ∈ S n lim ≤ t √ � t 45 / 4 1 e − s 2 ds √ π = −∞ (Gaussian distribution) Alternating Permutations – p. 41

  51. Umbral enumeration Umbral formula: involves E k , where E is an indeterminate (the umbra ). Replace E k with the Euler number E k . (Technique from 19th century, modernized by Rota et al.) Alternating Permutations – p. 42

  52. Umbral enumeration Umbral formula: involves E k , where E is an indeterminate (the umbra ). Replace E k with the Euler number E k . (Technique from 19th century, modernized by Rota et al.) Example. (1 + E 2 ) 3 = 1 + 3 E 2 + 3 E 4 + E 6 = 1 + 3 E 2 + 3 E 4 + E 6 = 1 + 3 · 1 + 3 · 5 + 61 = 80 Alternating Permutations – p. 42

  53. Another example � E � � E � (1 + t ) E = 1 + Et + t 2 + t 3 + · · · 2 3 = 1 + Et + 1 2 E ( E − 1) t 2 + · · · = 1 + E 1 t + 1 2( E 2 − E 1 )) t 2 + · · · = 1 + t + 1 2(1 − 1) t 2 + · · · = 1 + t + O ( t 3 ) . Alternating Permutations – p. 43

  54. An umbral quiz Let B be the Bell number umbra. Then Alternating Permutations – p. 44

  55. An umbral quiz Let B be the Bell number umbra. Then (1 + t ) B = ?? Alternating Permutations – p. 44

  56. An umbral quiz Let B be the Bell number umbra. Then (1 + t ) B = e t Alternating Permutations – p. 44

  57. Alt. fixed-point free involutions fixed point free involution w ∈ S 2 n : all cycles of length two (number = 1 · 3 · 5 · · · (2 n − 1) ) Alternating Permutations – p. 45

  58. Alt. fixed-point free involutions fixed point free involution w ∈ S 2 n : all cycles of length two (number = 1 · 3 · 5 · · · (2 n − 1) ) Let f ( n ) be the number of alternating fixed-point free involutions in S 2 n . Alternating Permutations – p. 45

  59. Alt. fixed-point free involutions fixed point free involution w ∈ S 2 n : all cycles of length two (number = 1 · 3 · 5 · · · (2 n − 1) ) Let f ( n ) be the number of alternating fixed-point free involutions in S 2 n . n = 3 : 214365 = (1 , 2)(3 , 4)(5 , 6) 645231 = (1 , 6)(2 , 4)(3 , 5) f (3) = 2 Alternating Permutations – p. 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend