numerical semigroups a sales pitch
play

Numerical semigroups: a sales pitch Christopher ONeill San Diego - PowerPoint PPT Presentation

Numerical semigroups: a sales pitch Christopher ONeill San Diego State University cdoneill@sdsu.edu Slides available: http://www.tinyurl.com/JMM2020-FURM January 17, 2020 Christopher ONeill (SDSU) Numerical semigroup: a sales pitch


  1. Numerical semigroups: a sales pitch Christopher O’Neill San Diego State University cdoneill@sdsu.edu Slides available: http://www.tinyurl.com/JMM2020-FURM January 17, 2020 Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 1 / 14

  2. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition . Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 2 / 14

  3. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , . . . } . Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 2 / 14

  4. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , . . . } . “McNugget Semigroup” Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 2 / 14

  5. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , . . . } . “McNugget Semigroup” Factorizations: 60 = Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 2 / 14

  6. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , . . . } . “McNugget Semigroup” Factorizations: 60 = 7(6) + 2(9) Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 2 / 14

  7. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , . . . } . “McNugget Semigroup” Factorizations: 60 = 7(6) + 2(9) = 3(20) Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 2 / 14

  8. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , . . . } . “McNugget Semigroup” Factorizations: 60 = 7(6) + 2(9) (7 , 2 , 0) � = 3(20) (0 , 0 , 3) � Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 2 / 14

  9. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  10. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . A factorization a = ( a 1 , . . . , a k ) ∈ Z k ≥ 0 of n n = a 1 n 1 + · · · + a k n k has length | a | = a 1 + · · · + a k . Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  11. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . A factorization a = ( a 1 , . . . , a k ) ∈ Z k ≥ 0 of n n = a 1 n 1 + · · · + a k n k has length | a | = a 1 + · · · + a k . Example All factorizations of 60 ∈ � 6 , 9 , 20 � : (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  12. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . A factorization a = ( a 1 , . . . , a k ) ∈ Z k ≥ 0 of n n = a 1 n 1 + · · · + a k n k has length | a | = a 1 + · · · + a k . Example All factorizations of 60 ∈ � 6 , 9 , 20 � : (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) Lengths: 3 , 7 , 8 , 9 , 10. Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  13. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . A factorization a = ( a 1 , . . . , a k ) ∈ Z k ≥ 0 of n n = a 1 n 1 + · · · + a k n k has length | a | = a 1 + · · · + a k . Example All factorizations of 60 ∈ � 6 , 9 , 20 � : (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) Lengths: 3 , 7 , 8 , 9 , 10. All factorizations of 1000001: Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  14. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . A factorization a = ( a 1 , . . . , a k ) ∈ Z k ≥ 0 of n n = a 1 n 1 + · · · + a k n k has length | a | = a 1 + · · · + a k . Example All factorizations of 60 ∈ � 6 , 9 , 20 � : (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) Lengths: 3 , 7 , 8 , 9 , 10. All factorizations of 1000001: , . . . , � �� � � �� � shortest longest Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  15. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . A factorization a = ( a 1 , . . . , a k ) ∈ Z k ≥ 0 of n n = a 1 n 1 + · · · + a k n k has length | a | = a 1 + · · · + a k . Example All factorizations of 60 ∈ � 6 , 9 , 20 � : (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) Lengths: 3 , 7 , 8 , 9 , 10. All factorizations of 1000001: (2 , 1 , 49999) , . . . , � �� � � �� � shortest longest Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  16. Extremal factorization length Fix a numerical semigroup S = � n 1 , . . . , n k � and an element n ∈ S . A factorization a = ( a 1 , . . . , a k ) ∈ Z k ≥ 0 of n n = a 1 n 1 + · · · + a k n k has length | a | = a 1 + · · · + a k . Example All factorizations of 60 ∈ � 6 , 9 , 20 � : (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) Lengths: 3 , 7 , 8 , 9 , 10. All factorizations of 1000001: (2 , 1 , 49999) , . . . , (166662 , 1 , 1) � �� � � �� � shortest longest Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 3 / 14

  17. Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let L( n ) = { a 1 + · · · + a k : n = a 1 n 1 + · · · + a k n k } denotes the length set of n Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 4 / 14

  18. Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let L( n ) = { a 1 + · · · + a k : n = a 1 n 1 + · · · + a k n k } denotes the length set of n , and M( n ) = max L( n ) and m( n ) = min L( n ) denote the maximum and minimum factorization lengths of n . Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 4 / 14

  19. Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let L( n ) = { a 1 + · · · + a k : n = a 1 n 1 + · · · + a k n k } denotes the length set of n , and M( n ) = max L( n ) and m( n ) = min L( n ) denote the maximum and minimum factorization lengths of n . Observations Max length factorization: lots of small generators Min length factorization: lots of large generators Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 4 / 14

  20. Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let L( n ) = { a 1 + · · · + a k : n = a 1 n 1 + · · · + a k n k } denotes the length set of n , and M( n ) = max L( n ) and m( n ) = min L( n ) denote the maximum and minimum factorization lengths of n . Observations Max length factorization: lots of small generators Min length factorization: lots of large generators Example S = � 5 , 16 , 17 , 18 , 19 � : Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 4 / 14

  21. Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let L( n ) = { a 1 + · · · + a k : n = a 1 n 1 + · · · + a k n k } denotes the length set of n , and M( n ) = max L( n ) and m( n ) = min L( n ) denote the maximum and minimum factorization lengths of n . Observations Max length factorization: lots of small generators Min length factorization: lots of large generators Example S = � 5 , 16 , 17 , 18 , 19 � : m(82) = 5 with 82 = 3(16) + 2(17) m(462) = 25 with 462 = 3(16) + 2(17) + 20(19) Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 4 / 14

  22. 12 10 8 6 4 2 10 20 30 40 50 60 70 80 Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let M( n ) = max L( n ) and m( n ) = min L( n ). Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 5 / 14

  23. 12 10 8 6 4 2 10 20 30 40 50 60 70 80 Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let M( n ) = max L( n ) and m( n ) = min L( n ). Example: max length in S = � 6 , 9 , 20 � Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 5 / 14

  24. Extremal factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , let M( n ) = max L( n ) and m( n ) = min L( n ). Example: max length in S = � 6 , 9 , 20 � 12 10 8 6 4 2 10 20 30 40 50 60 70 80 M( n ) : S → N Christopher O’Neill (SDSU) Numerical semigroup: a sales pitch January 17, 2020 5 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend