numerical semigroups feng rao distances in numerical
play

NUMERICAL SEMIGROUPS FengRao distances in numerical semigroups - PowerPoint PPT Presentation

I BERIAN MEETING ON NUMERICAL SEMIGROUPS FengRao distances in numerical semigroups and application to AG codes Porto 2008 Jos e Ignacio Farr an Mart n ignfar@eis.uva.es Departamento de Matem atica Aplicada Universidad


  1. I BERIAN MEETING ON “ NUMERICAL SEMIGROUPS ” Feng–Rao distances in numerical semigroups and application to AG codes Porto 2008 Jos´ e Ignacio Farr´ an Mart´ ın ignfar@eis.uva.es Departamento de Matem´ atica Aplicada Universidad de Valladolid – Campus de Segovia Escuela Universitaria de Inform´ atica Feng–Rao distances– p.1/45

  2. Contents • AG codes • Numerical semigroups Feng–Rao distances– p.2/45

  3. Contents • AG codes • Numerical semigroups Feng–Rao distances– p.3/45

  4. AG codes Feng–Rao distances– p.4/45

  5. Error-correcting codes Alphabet A = I F q Feng–Rao distances– p.5/45

  6. Error-correcting codes Alphabet A = I F q F n Code C ⊆ I q Feng–Rao distances– p.5/45

  7. Error-correcting codes Alphabet A = I F q F n Code C ⊆ I q “Size” dim C = k ≤ n Feng–Rao distances– p.5/45

  8. Error-correcting codes Alphabet A = I F q F n Code C ⊆ I q “Size” dim C = k ≤ n The difference n − k is called redundancy Feng–Rao distances– p.5/45

  9. Encoding Encoding is an injective (linear) map F k F n C : I q ֒ → I q where C is the image of such a map Feng–Rao distances– p.6/45

  10. Encoding Encoding is an injective (linear) map F k F n C : I q ֒ → I q where C is the image of such a map It can be described by means of the generator matrix G of C whose rows are a basis of C Feng–Rao distances– p.6/45

  11. Encoding Encoding is an injective (linear) map F k F n C : I q ֒ → I q where C is the image of such a map It can be described by means of the generator matrix G of C whose rows are a basis of C Thus the encoding has a matrix expression c = m · G where m represents to k “information digits” Feng–Rao distances– p.6/45

  12. Errors encoding decoding − → − → transmitter CHANNEL receiver Feng–Rao distances– p.7/45

  13. Errors NOISE ↓ encoding decoding − → − → transmitter CHANNEL receiver Feng–Rao distances– p.8/45

  14. Errors transmitter receiver ↓ ↑ Information Decoded NOISE Source Information ↓ ↓ ↑ error encoding decoding ↓ ↓ ↑ Encoded Received − → − → CHANNEL Information Information Feng–Rao distances– p.9/45

  15. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.10/45

  16. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0101 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.11/45

  17. Examples of codes source I II III IV V 0 0000 10000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.12/45

  18. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000010 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.13/45

  19. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000101000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.14/45

  20. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.15/45

  21. Examples of codes source I II III IV V 0 0000 00000000 000000000000 01000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.16/45

  22. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Feng–Rao distances– p.17/45

  23. Hamming distance F n The Hamming distance in I q is defined by d ( x , y ) . = ♯ { i | x i � = y i } Feng–Rao distances– p.18/45

  24. Hamming distance F n The Hamming distance in I q is defined by d ( x , y ) . = ♯ { i | x i � = y i } The minimum distance of C is d . = d ( C ) . = min { d ( c , c ′ ) | c , c ′ ∈ C, c � = c ′ } Feng–Rao distances– p.18/45

  25. Hamming distance F n The Hamming distance in I q is defined by d ( x , y ) . = ♯ { i | x i � = y i } The minimum distance of C is d . = d ( C ) . = min { d ( c , c ′ ) | c , c ′ ∈ C, c � = c ′ } The parameters of a code are C ≡ [ n, k, d ] q length n dimension k minimum distance d Feng–Rao distances– p.18/45

  26. Error detection and correction Let d be the minimum distance of the code C Feng–Rao distances– p.19/45

  27. Error detection and correction Let d be the minimum distance of the code C C detects up to d − 1 errors Feng–Rao distances– p.19/45

  28. Error detection and correction Let d be the minimum distance of the code C C detects up to d − 1 errors C corrects up to ⌊ d − 1 ⌋ errors 2 Feng–Rao distances– p.19/45

  29. Error detection and correction Let d be the minimum distance of the code C C detects up to d − 1 errors C corrects up to ⌊ d − 1 ⌋ errors 2 C corrects up to d − 1 erasures Feng–Rao distances– p.19/45

  30. Error detection and correction Let d be the minimum distance of the code C C detects up to d − 1 errors C corrects up to ⌊ d − 1 ⌋ errors 2 C corrects up to d − 1 erasures C corrects any configuration of t errors and s erasures, provided 2 t + s ≤ d − 1 Feng–Rao distances– p.19/45

  31. Examples Encode four possible messages { a, b, c, d } n = k = 2 Example 1: a = 00 b = 01 c = 10 d = 11 d = 1 ⇒ NO error capability Feng–Rao distances– p.20/45

  32. Examples Encode four possible messages { a, b, c, d } n = 3 (one control digit) Example 2: a = 000 b = 011 ( x 3 = x 1 + x 2 ) c = 101 d = 110 d = 2 ⇒ DETECTS one single error Feng–Rao distances– p.21/45

  33. Examples Encode four possible messages { a, b, c, d } n = 5 (three control digits) Example 3: a = 00000   x 3 = x 1 + x 2 b = 01101 x 4 = x 2 + x 3   c = 10110 x 5 = x 3 + x 4 d = 11011 d = 3 ⇒ CORRECTS one single error Feng–Rao distances– p.22/45

  34. Conclusion It is important for decoding to compute either the exact value of d , or a lower-bound for d in order to estimate how many errors (at least) we expect to detect/correct • In the case of AG codes some numerical semigroup helps . . . Feng–Rao distances– p.23/45

  35. One-point AG Codes χ “curve” over a finite field I F ≡ I F q Feng–Rao distances– p.24/45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend