numerical semigroups and codes
play

Numerical Semigroups and Codes Cortona 2014 Jos e Ignacio Farr an - PowerPoint PPT Presentation

I NTERNATIONAL M EETING ON N UMERICAL S EMIGROUPS Numerical Semigroups and Codes Cortona 2014 Jos e Ignacio Farr an Mart n jifarran@eii.uva.es Departamento de Matem atica Aplicada Universidad de Valladolid Campus de Segovia


  1. I NTERNATIONAL M EETING ON N UMERICAL S EMIGROUPS Numerical Semigroups and Codes Cortona 2014 Jos´ e Ignacio Farr´ an Mart´ ın jifarran@eii.uva.es Departamento de Matem´ atica Aplicada Universidad de Valladolid – Campus de Segovia Escuela Universitaria de Inform´ atica Joint work with: M. Delgado, P. A. Garc´ ıa-S´ anchez, and D. Llena Numerical Semigroups and Codes– p. 1/48

  2. Contents • AG codes • Numerical semigroups Numerical Semigroups and Codes– p. 2/48

  3. Contents • AG codes • Numerical semigroups Numerical Semigroups and Codes– p. 3/48

  4. AG codes Numerical Semigroups and Codes– p. 4/48

  5. Error-correcting codes Alphabet A = F q Code C ⊆ F n q Dimension dim C = k ≤ n The difference n − k is called redundancy Numerical Semigroups and Codes– p. 5/48

  6. Encoding Encoding is an injective (linear) map C : F k → F n q ֒ q where C is the image of such a map It can be described by means of the generator matrix G of C whose rows are a basis of C Thus the encoding has a matrix expression c = m · G where m represents to k “information digits” Numerical Semigroups and Codes– p. 6/48

  7. Errors transmitter receiver ↓ ↑ Information Decoded NOISE Source Information ↓ ↓ ↑ error encoding decoding ↓ ↓ ↑ Encoded Received − → − → CHANNEL Information Information Numerical Semigroups and Codes– p. 7/48

  8. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 8/48

  9. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0101 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 9/48

  10. Examples of codes source I II III IV V 0 0000 10000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 10/48

  11. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000010 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 11/48

  12. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000101000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 12/48

  13. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 13/48

  14. Examples of codes source I II III IV V 0 0000 00000000 000000000000 01000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 14/48

  15. Examples of codes source I II III IV V 0 0000 00000000 000000000000 00000 00011 1 0001 00000011 000000000111 00011 11000 2 0010 00001100 000000111000 00101 10100 3 0011 00001111 000000111111 00110 01100 4 0100 00110000 000111000000 01001 10010 5 0101 00110011 000111000111 01010 01010 6 0110 00111100 000111111000 01100 00110 7 0111 00111111 000111111111 01111 10001 8 1000 11000000 111000000000 10001 01001 9 1001 11000011 111000000111 10010 00101 Numerical Semigroups and Codes– p. 15/48

  16. Hamming distance The Hamming distance in F n q is defined by d ( x , y ) . = ♯ { i | x i � = y i } The minimum distance of C is d . = d ( C ) . = min { d ( c , c ′ ) | c , c ′ ∈ C, c � = c ′ } The parameters of a code are C ≡ [ n, k, d ] q length n dimension k minimum distance d Numerical Semigroups and Codes– p. 16/48

  17. Error detection and correction Let d be the minimum distance of the code C C detects up to d − 1 errors C corrects up to ⌊ d − 1 ⌋ errors 2 C corrects up to d − 1 erasures C corrects any configuration of t errors and s erasures, provided 2 t + s ≤ d − 1 Numerical Semigroups and Codes– p. 17/48

  18. Examples Encode four possible messages { a, b, c, d } n = k = 2 Example 1: a = 00 b = 01 c = 10 d = 11 d = 1 ⇒ NO error capability Numerical Semigroups and Codes– p. 18/48

  19. Examples Encode four possible messages { a, b, c, d } n = 3 (one control digit) Example 2: a = 000 b = 011 ( x 3 = x 1 + x 2 ) c = 101 d = 110 d = 2 ⇒ DETECTS one single error Numerical Semigroups and Codes– p. 19/48

  20. Examples Encode four possible messages { a, b, c, d } n = 5 (three control digits) Example 3: a = 00000   x 3 = x 1 + x 2 b = 01101 x 4 = x 2 + x 3   c = 10110 x 5 = x 3 + x 4 d = 11011 d = 3 ⇒ CORRECTS one single error Numerical Semigroups and Codes– p. 20/48

  21. Conclusion It is important for decoding to compute either the exact value of d , or a lower-bound for d in order to estimate how many errors (at least) we expect to detect/correct • In the case of AG codes some numerical semigroup helps . . . Numerical Semigroups and Codes– p. 21/48

  22. One-point AG Codes χ “curve” over a finite field F ≡ F q P and P 1 , . . . , P n “rational” points of χ C ∗ m image of the linear map F n ev D : L ( mP ) − → f �→ ( f ( P 1 ) , . . . , f ( P n )) C m the orthogonal code of C ∗ m with respect to the canonical bilinear form n � a , b � . � = a i b i i =1 Numerical Semigroups and Codes– p. 22/48

  23. Parameters If we assume that 2 g − 2 < m < n , then the encoding F n ev D : L ( mP ) − → f �→ ( f ( P 1 ) , . . . , f ( P n )) is injective and k = n − m + g − 1 d ≥ m + 2 − 2 g (Goppa bound) by using the Riemann-Roch theorem Numerical Semigroups and Codes– p. 23/48

  24. Weierstrass semigroup The Goppa bound can actually be improved by using the Weierstrass semigroup of χ at the point p Γ P . = { m ∈ N | ∃ f with ( f ) ∞ = mP } Note that Γ P = N \ { ℓ 1 , . . . , ℓ g } where g is the genus of χ and the numbers ℓ i are called the Weierstrass gaps of χ at P k = n − k m , where k m . = ♯ (Γ P ∩ [0 , m ]) (note that k m = m + 1 − g for m >> 0 ) d ≥ δ ( m + 1) (the so-called Feng–Rao distance) We have an improvement, since δ ( m + 1) ≥ m + 2 − 2 g , and they coincide for m >> 0 Numerical Semigroups and Codes– p. 24/48

  25. Generalized Hamming weights Define the support of a linear code C as supp( C ) := { i | c i � = 0 for some c ∈ C } The r -th generalized weight of C is defined by d r ( C ) := min { ♯ supp( C ′ ) | C ′ ≤ C with dim( C ′ ) = r } The above definition only makes sense if r ≤ k , where k = dim ( C ) The set of numbers GHW( C ) := { d 1 , . . . , d k } is called the weight hierarchy of the code C Numerical Semigroups and Codes– p. 25/48

  26. Generalized Feng-Rao distances It is possible to generalize the generalized Feng-Rao distance for higher order r It is also known that for a one-point AG code C m one has d r ( C m ) ≥ δ r FR ( m + 1) The details on Feng-Rao distances are given later Numerical Semigroups and Codes– p. 26/48

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend