counting numerical semigroups of a given genus by using
play

Counting numerical semigroups of a given genus by using - PowerPoint PPT Presentation

Counting numerical semigroups of a given genus by using -hyperelliptic semigroups Matheus Bernardini 1 University of Campinas / Federal Institute of S ao Paulo (Joint work in progress with Fernando Torres 1 ) International Meeting on


  1. Counting numerical semigroups of a given genus by using γ -hyperelliptic semigroups Matheus Bernardini 1 University of Campinas / Federal Institute of S˜ ao Paulo (Joint work in progress with Fernando Torres 1 ) International Meeting on Numerical Semigroups with Applications Levico Terme, July 5 2016 1 Both authors are partially supported by CNPq Matheus Bernardini IMNS 2016 1 / 34

  2. 1 Introduction 2 A brief survey about counting numerical semigroups by genus 3 Our approach 4 A related problem Matheus Bernardini IMNS 2016 2 / 34

  3. Introduction Let S be a numerical semigroup. G ( S ) := N 0 \ S - set of gaps of S ; g ( S ) := # G ( S ) - genus of S ; n g := # { S : g ( S ) = g } . Examples n 0 = 1 − N 0 n 1 = 1 − N 0 \ { 1 } n 2 = 2 − N 0 \ { 1 , 2 } and N 0 \ { 1 , 3 } n 3 = 4 − N 0 \ { 1 , 2 , 3 } , N 0 \ { 1 , 2 , 4 } , N 0 \ { 1 , 2 , 5 } and N 0 \ { 1 , 3 , 5 } Matheus Bernardini IMNS 2016 3 / 34

  4. Interest Studying the behavior of n g . Main Goal (but still not solved) n g ≤ n g +1 , for all g . Matheus Bernardini IMNS 2016 4 / 34

  5. Interest Studying the behavior of n g . Main Goal (but still not solved) n g ≤ n g +1 , for all g . Matheus Bernardini IMNS 2016 4 / 34

  6. A brief survey First Bound If g ( S ) = g , then 2 g + N 0 ⊂ S . Hence, � 2 g − 1 � n g ≤ . g M. Bras-Amor´ os and A. de Mier - 2007 � 2 g � 1 n g ≤ C g = . g + 1 g Matheus Bernardini IMNS 2016 5 / 34

  7. A brief survey First Bound If g ( S ) = g , then 2 g + N 0 ⊂ S . Hence, � 2 g − 1 � n g ≤ . g M. Bras-Amor´ os and A. de Mier - 2007 � 2 g � 1 n g ≤ C g = . g + 1 g Matheus Bernardini IMNS 2016 5 / 34

  8. √ From now on, let ϕ = 1+ 5 . 2 M. Bras-Amor´ os - 2006/2008 (Conjecture) n g +1 lim = ϕ ; 1 n g g →∞ n g +1 + n g lim = 1 . n g +2 g →∞ 2 n g + n g +1 ≤ n g +2 , for all g. Matheus Bernardini IMNS 2016 6 / 34

  9. M. Bras-Amor´ os - 2009 Let ( F n ) n ≥ 0 = (1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . ) be the Fibonacci sequence. Then 2 F g ≤ n g ≤ 1 + 3 · 2 g − 3 , ∀ g ≥ 3 . S. Elizalde - 2010 a g ≤ n g ≤ c g , ∀ g ≥ 1 where a g and c g are coefficients of some explicit generating functions. Matheus Bernardini IMNS 2016 7 / 34

  10. M. Bras-Amor´ os - 2009 Let ( F n ) n ≥ 0 = (1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . ) be the Fibonacci sequence. Then 2 F g ≤ n g ≤ 1 + 3 · 2 g − 3 , ∀ g ≥ 3 . S. Elizalde - 2010 a g ≤ n g ≤ c g , ∀ g ≥ 1 where a g and c g are coefficients of some explicit generating functions. Matheus Bernardini IMNS 2016 7 / 34

  11. A. Zhai - 2011/2013 n g +1 lim = ϕ ; 1 n g g →∞ n g +1 + n g lim = 1 . 2 n g +2 g →∞ Remark Zhai’s first item implies that n g < n g +1 , for g ≫ 0. Checking if n g ≤ n g +1 for all g is still an open problem (weaker conjecture). Matheus Bernardini IMNS 2016 8 / 34

  12. A. Zhai - 2011/2013 n g +1 lim = ϕ ; 1 n g g →∞ n g +1 + n g lim = 1 . 2 n g +2 g →∞ Remark Zhai’s first item implies that n g < n g +1 , for g ≫ 0. Checking if n g ≤ n g +1 for all g is still an open problem (weaker conjecture). Matheus Bernardini IMNS 2016 8 / 34

  13. m ( S ) := min { s ∈ S : s � = 0 } - multiplicity of S ; N ( m , g ) := # { S : g ( S ) = g and m ( S ) = m } . N. Kaplan - 2012 If 2 g < 3 m, then N ( m , g ) = N ( m − 1 , g − 1) + N ( m − 1 , g − 2) . Matheus Bernardini IMNS 2016 9 / 34

  14. Matheus Bernardini IMNS 2016 10 / 34

  15. Part of M. Bras-Amor´ os’ presentation in last IMNS; r ( S ) - ordinarization number of S ; n g , r := # { S : g ( S ) = g and r ( S ) = r } . Matheus Bernardini IMNS 2016 11 / 34

  16. Part of M. Bras-Amor´ os’ presentation in last IMNS; r ( S ) - ordinarization number of S ; n g , r := # { S : g ( S ) = g and r ( S ) = r } . Matheus Bernardini IMNS 2016 11 / 34

  17. M. Bras-Amor´ os - 2012 � � If r > max { g g +1 3 + 1 , − 14 } , then n g , r ≤ n g +1 , r . 2 M. Bras-Amor´ os - 2012 (Conjecture) If r > g 3 , then n g , r ≤ n g +1 , r . Matheus Bernardini IMNS 2016 12 / 34

  18. M. Bras-Amor´ os - 2012 � � If r > max { g g +1 3 + 1 , − 14 } , then n g , r ≤ n g +1 , r . 2 M. Bras-Amor´ os - 2012 (Conjecture) If r > g 3 , then n g , r ≤ n g +1 , r . Matheus Bernardini IMNS 2016 12 / 34

  19. Our approach γ ( S ): number of even gaps of S - #[ G ( S ) ∩ 2 Z ]; γ -hyperelliptic semigroup: numerical semigroup with γ even gaps; N γ ( g ) := # { S : g ( S ) = g and γ ( S ) = γ } . g � n g = N γ ( g ) γ =0 Matheus Bernardini IMNS 2016 13 / 34

  20. Our approach γ ( S ): number of even gaps of S - #[ G ( S ) ∩ 2 Z ]; γ -hyperelliptic semigroup: numerical semigroup with γ even gaps; N γ ( g ) := # { S : g ( S ) = g and γ ( S ) = γ } . g � n g = N γ ( g ) γ =0 Matheus Bernardini IMNS 2016 13 / 34

  21. Examples n 0 = 1 ( N 0 ) and � 1 , if γ = 0 N γ (0) = 0 , if γ ≥ 1 . n 1 = 1 ( N 0 \ { 1 } ) and � 1 , if γ = 0 N γ (1) = 0 , if γ ≥ 1 . n 2 = 2 ( N 0 \ { 1 , 2 } and N 0 \ { 1 , 3 } ) and  1 , if γ = 0   N γ (2) = 1 , if γ = 1   0 , if γ ≥ 2 . Matheus Bernardini IMNS 2016 14 / 34

  22. F. Torres - 1997 If γ and g are the number of even gaps and the genus of a numerical semigroup S, respectively, then 3 γ ≤ 2 g. Remark If γ is even, then N 0 \ ( { 2 , 4 , . . . , 2 γ } ∪ { 1 , 3 , . . . , γ − 1 } ) is a numerical semigroup with genus g = 3 γ 2 . ⌊ 2 g 3 ⌋ � n g = N γ ( g ) γ =0 Matheus Bernardini IMNS 2016 15 / 34

  23. F. Torres - 1997 If γ and g are the number of even gaps and the genus of a numerical semigroup S, respectively, then 3 γ ≤ 2 g. Remark If γ is even, then N 0 \ ( { 2 , 4 , . . . , 2 γ } ∪ { 1 , 3 , . . . , γ − 1 } ) is a numerical semigroup with genus g = 3 γ 2 . ⌊ 2 g 3 ⌋ � n g = N γ ( g ) γ =0 Matheus Bernardini IMNS 2016 15 / 34

  24. Theorem 1 Let γ be a nonnegative integer and g ≥ 3 γ . Then N γ ( g ) = N γ (3 γ ) . Thus, N γ ( g ) = N γ ( g + 1) , for all g ≥ 3 γ . Theorem 2 Let γ be a nonnegative integer and g < 3 γ . Then N γ ( g ) < N γ (3 γ ) . Matheus Bernardini IMNS 2016 16 / 34

  25. Theorem 1 Let γ be a nonnegative integer and g ≥ 3 γ . Then N γ ( g ) = N γ (3 γ ) . Thus, N γ ( g ) = N γ ( g + 1) , for all g ≥ 3 γ . Theorem 2 Let γ be a nonnegative integer and g < 3 γ . Then N γ ( g ) < N γ (3 γ ) . Matheus Bernardini IMNS 2016 16 / 34

  26. g / γ 0 1 2 3 4 5 6 7 8 9 10 n g 0 1 1 1 1 1 2 1 1 2 3 1 2 1 4 4 1 2 4 7 5 1 2 6 3 12 6 1 2 7 12 1 23 7 1 2 7 19 10 39 8 1 2 7 21 32 4 67 9 1 2 7 23 51 33 1 118 10 1 2 7 23 62 91 18 204 11 1 2 7 23 65 142 98 5 343 12 1 2 7 23 68 174 257 59 1 592 13 1 2 7 23 68 192 412 271 25 1001 14 1 2 7 23 68 197 514 678 197 6 1693 15 1 2 7 23 68 200 570 1100 793 92 1 2857 Matheus Bernardini IMNS 2016 17 / 34

  27. Notice that ⌊ g ⌊ 2 g 3 ⌋ 3 ⌋ � � n g = N γ ( g ) + N γ ( g ) . γ =0 γ = ⌊ g 3 ⌋ +1 � 2( g +1) � ⌊ g 3 ⌋ 3 � � n g +1 = N γ ( g + 1) + N γ ( g + 1) . γ =0 γ = ⌊ g 3 ⌋ +1 Theorem 1 states that N γ ( g ) = N γ ( g + 1), for γ ≤ g 3 . Matheus Bernardini IMNS 2016 18 / 34

  28. Notice that ⌊ g ⌊ 2 g 3 ⌋ 3 ⌋ � � n g = N γ ( g ) + N γ ( g ) . γ =0 γ = ⌊ g 3 ⌋ +1 � 2( g +1) � ⌊ g 3 ⌋ 3 � � n g +1 = N γ ( g + 1) + N γ ( g + 1) . γ =0 γ = ⌊ g 3 ⌋ +1 Theorem 1 states that N γ ( g ) = N γ ( g + 1), for γ ≤ g 3 . Matheus Bernardini IMNS 2016 18 / 34

  29. Notice that ⌊ g ⌊ 2 g 3 ⌋ 3 ⌋ � � n g = N γ ( g ) + N γ ( g ) . γ =0 γ = ⌊ g 3 ⌋ +1 � 2( g +1) � ⌊ g 3 ⌋ 3 � � n g +1 = N γ ( g + 1) + N γ ( g + 1) . γ =0 γ = ⌊ g 3 ⌋ +1 Theorem 1 states that N γ ( g ) = N γ ( g + 1), for γ ≤ g 3 . Matheus Bernardini IMNS 2016 18 / 34

  30. Corollary n g ≤ n g +1 if, and only if, � 2( g +1) � ⌊ 2 g 3 ⌋ 3 � � N γ ( g ) ≤ N γ ( g + 1) . γ = ⌊ g 3 ⌋ +1 γ = ⌊ g 3 ⌋ +1 Matheus Bernardini IMNS 2016 19 / 34

  31. g / γ 0 1 2 3 4 5 6 7 8 9 10 n g 0 1 1 1 1 1 2 1 1 2 3 1 2 1 4 4 1 2 4 7 5 1 2 6 3 12 6 1 2 7 12 1 23 7 1 2 7 19 10 39 8 1 2 7 21 32 4 67 9 1 2 7 23 51 33 1 118 10 1 2 7 23 62 91 18 204 11 1 2 7 23 65 142 98 5 343 12 1 2 7 23 68 174 257 59 1 592 13 1 2 7 23 68 192 412 271 25 1001 14 1 2 7 23 68 197 514 678 197 6 1693 15 1 2 7 23 68 200 570 1100 793 92 1 2857 Matheus Bernardini IMNS 2016 20 / 34

  32. Conjecture Let γ be a non-negative integer. Then N γ ( g ) ≤ N γ ( g + 1) , ∀ g . Remark If this Conjecture holds, then n g ≤ n g +1 for all g . Matheus Bernardini IMNS 2016 21 / 34

  33. Conjecture Let γ be a non-negative integer. Then N γ ( g ) ≤ N γ ( g + 1) , ∀ g . Remark If this Conjecture holds, then n g ≤ n g +1 for all g . Matheus Bernardini IMNS 2016 21 / 34

  34. Construction of a γ -hyperelliptic semigroup of genus g γ - positive integer T = N 0 \ { q 1 , . . . , q γ } numerical semigroup S = 2 · T ∪ (2 · N 0 + 1) \ { “suitable choice”of g − γ odd numbers } Matheus Bernardini IMNS 2016 22 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend