generating functions and recurrence relations
play

GENERATING FUNCTIONS AND RECURRENCE RELATIONS Generating Functions - PowerPoint PPT Presentation

GENERATING FUNCTIONS AND RECURRENCE RELATIONS Generating Functions Recurrence Relations Suppose a 0 , a 1 , a 2 , . . . , a n , . . . , is an infinite sequence. A recurrence recurrence relation is a set of equations a n = f n ( a n 1 , a n


  1. GENERATING FUNCTIONS AND RECURRENCE RELATIONS Generating Functions

  2. Recurrence Relations Suppose a 0 , a 1 , a 2 , . . . , a n , . . . , is an infinite sequence. A recurrence recurrence relation is a set of equations a n = f n ( a n − 1 , a n − 2 , . . . , a n − k ) . (1) The whole sequence is determined by (6) and the values of a 0 , a 1 , . . . , a k − 1 . Generating Functions

  3. Linear Recurrence Fibonacci Sequence a n = a n − 1 + a n − 2 n ≥ 2 . a 0 = a 1 = 1. Generating Functions

  4. b n = | B n | = |{ x ∈ { a , b , c } n : aa does not occur in x }| . b 1 = 3 : a b c b 2 = 8 : ab ac ba bb bc ca cb cc b n = 2 b n − 1 + 2 b n − 2 n ≥ 2 . Generating Functions

  5. b n = 2 b n − 1 + 2 b n − 2 n ≥ 2 . Let B n = B ( b ) ∪ B ( c ) ∪ B ( a ) n n n where B ( α ) = { x ∈ B n : x 1 = α } for α = a , b , c . n Now | B ( b ) n | = | B ( c ) n | = | B n − 1 | . The map f : B ( b ) → B n − 1 , n f ( bx 2 x 3 . . . x n ) = x 2 x 3 . . . x n is a bijection. B ( a ) = { x ∈ B n : x 1 = a and x 2 = b or c } . The map n g : B ( a ) → B ( b ) n − 1 ∪ B ( c ) n − 1 , n g ( ax 2 x 3 . . . x n ) = x 2 x 3 . . . x n is a bijection. Hence, | B ( a ) n | = 2 | B n − 2 | . Generating Functions

  6. Towers of Hanoi Peg 2 Peg 3 Peg 1 Hn is the minimum number of moves needed to shift n rings from Peg 1 to Peg 2. One is not allowed to place a larger ring on top of a smaller ring. Generating Functions

  7. xxx H n-1 moves 1 move H n-1 moves Generating Functions

  8. A has n dollars. Everyday A buys one of a Bun (1 dollar), an Ice-Cream (2 dollars) or a Pastry (2 dollars). How many ways are there (sequences) for A to spend his money? Ex. BBPIIPBI represents “Day 1, buy Bun. Day 2, buy Bun etc.”. u n = number of ways = u n , B + u n , I + u n , P where u n , B is the number of ways where A buys a Bun on day 1 etc. u n , B = u n − 1 , u n , I = u n , P = u n − 2 . So u n = u n − 1 + 2 u n − 2 , and u 0 = u 1 = 1 . Generating Functions

  9. If a 0 , a 1 , . . . , a n is a sequence of real numbers then its (ordinary) generating function a ( x ) is given by a ( x ) = a 0 + a 1 x + a 2 x 2 + · · · a n x n + · · · and we write a n = [ x n ] a ( x ) . For more on this subject see Generatingfunctionology by the late Herbert S. Wilf. The book is available from https://www.math.upenn.edu// wilf/DownldGF .html Generating Functions

  10. a n = 1 1 1 − x = 1 + x + x 2 + · · · + x n + · · · a ( x ) = a n = n + 1. 1 ( 1 − x ) 2 = 1 + 2 x + 3 x 2 + · · · + ( n + 1 ) x n + · · · a ( x ) = a n = n . x ( 1 − x ) 2 = x + 2 x 2 + 3 x 3 + · · · + nx n + · · · a ( x ) = Generating Functions

  11. Generalised binomial theorem: � α � a n = n ∞ � α � a ( x ) = ( 1 + x ) α = � x n . n n = 0 where � α � = α ( α − 1 )( α − 2 ) · · · ( α − n + 1 ) . n n ! � m + n − 1 � a n = n ∞ ∞ � − m � � m + n − 1 � 1 ( − x ) n = � � x n . a ( x ) = ( 1 − x ) m = n n n = 0 n = 0 Generating Functions

  12. General view. Given a recurrence relation for the sequence ( a n ) , we (a) Deduce from it, an equation satisfied by the generating n a n x n . function a ( x ) = � (b) Solve this equation to get an explicit expression for the generating function. (c) Extract the coefficient a n of x n from a ( x ) , by expanding a ( x ) as a power series. Generating Functions

  13. Solution of linear recurrences a n − 6 a n − 1 + 9 a n − 2 = 0 n ≥ 2 . a 0 = 1 , a 1 = 9. ∞ ( a n − 6 a n − 1 + 9 a n − 2 ) x n = 0 . � (2) n = 2 Generating Functions

  14. ∞ � a n x n = a ( x ) − a 0 − a 1 x n = 2 = a ( x ) − 1 − 9 x . ∞ ∞ � � 6 a n − 1 x n a n − 1 x n − 1 = 6 x n = 2 n = 2 = 6 x ( a ( x ) − a 0 ) = 6 x ( a ( x ) − 1 ) . ∞ ∞ � 9 a n − 2 x n 9 x 2 � a n − 2 x n − 2 = n = 2 n = 2 9 x 2 a ( x ) . = Generating Functions

  15. a ( x ) − 1 − 9 x − 6 x ( a ( x ) − 1 ) + 9 x 2 a ( x ) = 0 or a ( x )( 1 − 6 x + 9 x 2 ) − ( 1 + 3 x ) = 0 . 1 + 3 x 1 + 3 x a ( x ) = 1 − 6 x + 9 x 2 = ( 1 − 3 x ) 2 ∞ ∞ ( n + 1 ) 3 n x n + 3 x � � ( n + 1 ) 3 n x n = n = 0 n = 0 ∞ ∞ ( n + 1 ) 3 n x n + � � n 3 n x n = n = 0 n = 0 ∞ � ( 2 n + 1 ) 3 n x n . = n = 0 a n = ( 2 n + 1 ) 3 n . Generating Functions

  16. Fibonacci sequence: ∞ ( a n − a n − 1 − a n − 2 ) x n = 0 . � n = 2 ∞ ∞ ∞ a n x n − a n − 1 x n − a n − 2 x n = 0 . � � � n = 2 n = 2 n = 2 ( a ( x ) − a 0 − a 1 x ) − ( x ( a ( x ) − a 0 )) − x 2 a ( x ) = 0 . 1 a ( x ) = 1 − x − x 2 . Generating Functions

  17. 1 a ( x ) = − ( ξ 1 − x )( ξ 2 − x ) 1 � 1 1 � = ξ 1 − x − ξ 1 − ξ 2 ξ 2 − x � � ξ − 1 ξ − 1 1 1 2 = − ξ 1 − ξ 2 1 − x /ξ 1 1 − x /ξ 2 where √ √ 5 + 1 5 − 1 ξ 1 = − and ξ 2 = 2 2 are the 2 roots of x 2 + x − 1 = 0 . Generating Functions

  18. Therefore, ∞ ∞ ξ − 1 ξ − 1 1 x n − � � 1 ξ − n 2 ξ − n 2 x n a ( x ) = ξ 1 − ξ 2 ξ 1 − ξ 2 n = 0 n = 0 ∞ ξ − n − 1 − ξ − n − 1 � 1 2 x n = ξ 1 − ξ 2 n = 0 and so ξ − n − 1 − ξ − n − 1 1 2 a n = ξ 1 − ξ 2 � √ √  � n + 1  � n + 1 � 1 5 + 1 1 − 5  . √ = −  2 2 5 Generating Functions

  19. Inhomogeneous problem a n − 3 a n − 1 = n 2 n ≥ 1 . a 0 = 1. ∞ ∞ � ( a n − 3 a n − 1 ) x n � n 2 x n = n = 1 n = 1 ∞ ∞ ∞ n ( n − 1 ) x n + � n 2 x n � � nx n = n = 1 n = 2 n = 1 2 x 2 x = ( 1 − x ) 3 + ( 1 − x ) 2 x + x 2 = ( 1 − x ) 3 ∞ � ( a n − 3 a n − 1 ) x n = a ( x ) − 1 − 3 xa ( x ) n = 1 = a ( x )( 1 − 3 x ) − 1 . Generating Functions

  20. x + x 2 1 a ( x ) = ( 1 − x ) 3 ( 1 − 3 x ) + 1 − 3 x A B ( 1 − x ) 3 + D + 1 C = 1 − x + ( 1 − x ) 2 + 1 − 3 x where x + x 2 ∼ A ( 1 − x ) 2 ( 1 − 3 x ) + B ( 1 − x )( 1 − 3 x ) = + C ( 1 − 3 x ) + D ( 1 − x ) 3 . Then A = − 1 / 2 , B = 0 , C = − 1 , D = 3 / 2 . Generating Functions

  21. So − 1 / 2 1 5 / 2 a ( x ) = 1 − x − ( 1 − x ) 3 + 1 − 3 x ∞ ∞ ∞ − 1 � n + 2 � x n + 5 x n − � � � 3 n x n = 2 2 2 n = 0 n = 0 n = 0 So − 1 � n + 2 � + 5 23 n a n = 2 − 2 2 − n 2 − 3 2 − 3 n 2 + 5 23 n . = Generating Functions

  22. General case of linear recurrence a n + c 1 a n − 1 + · · · + c k a n − k = u n , n ≥ k . u 0 , u 1 , . . . , u k − 1 are given. ( a n + c 1 a n − 1 + · · · + c k a n − k − u n ) x n = 0 � It follows that for some polynomial r ( x ) , a ( x ) = u ( x ) + r ( x ) q ( x ) where k q ( x ) = 1 + c 1 x + c 2 x 2 + · · · + c k x k = � ( 1 − α i x ) i = 1 and α 1 , α 2 , . . . , α k are the roots of p ( x ) = 0 where p ( x ) = x k q ( 1 / x ) = x k + c 1 x k − 1 + · · · + c 0 . Generating Functions

  23. Products of generating functions ∞ ∞ � � a n x n , b ( x )) = b n x n . a ( x ) = n = 0 n = 0 ( a 0 + a 1 x + a 2 x 2 + · · · ) × a ( x ) b ( x ) = ( b 0 + b 1 x + b 2 x 2 + · · · ) = a 0 b 0 + ( a 0 b 1 + a 1 b 0 ) x + ( a 0 b 2 + a 1 b 1 + a 2 b 0 ) x 2 + · · · ∞ � c n x n = n = 0 where n � c n = a k b n − k . k = 0 Generating Functions

  24. Derangements n � n � � n ! = d n − k . k k = 0 � n � Explanation: d n − k is the number of permutations with k � n � exactly k cycles of length 1. Choose k elements ( ways) for k which π ( i ) = i and then choose a derangement of the remaining n − k elements. So n 1 d n − k � 1 = k ! ( n − k )! k = 0 � n ∞ ∞ � 1 d n − k � x n � � x n . = (3) k ! ( n − k )! n = 0 n = 0 k = 0 Generating Functions

  25. Let ∞ d m � m ! x m . d ( x ) = m = 0 From (3) we have 1 e x d ( x ) = 1 − x e − x d ( x ) = 1 − x ∞ n � ( − 1 ) k � � � x n . = k ! n = 0 k = 0 So n ( − 1 ) k d n � = . n ! k ! k = 0 Generating Functions

  26. Triangulation of n -gon Let a n = number of triangulations of P n + 1 n � = a k a n − k n ≥ 2 (4) k = 0 a 0 = 0, a 1 = a 2 = 1. k +1 n+1 1 Generating Functions

  27. Explanation of (4): a k a n − k counts the number of triangulations in which edge 1 , n + 1 is contained in triangle 1 , k + 1 , n + 1. There are a k ways of triangulating 1 , 2 , . . . , k + 1 , 1 and for each such there are a n − k ways of triangulating k + 1 , k + 2 , . . . , n + 1 , k + 1. Generating Functions

  28. � n � ∞ ∞ a n x n = x + � � � x n . x + a k a n − k n = 2 n = 2 k = 0 But, ∞ a n x n = a ( x ) � x + n = 2 since a 0 = 0 , a 1 = 1. � n � n � � ∞ ∞ � � x n � � x n a k a n − k = a k a n − k n = 2 k = 0 n = 0 k = 0 a ( x ) 2 . = Generating Functions

  29. So a ( x ) = x + a ( x ) 2 and hence √ √ a ( x ) = 1 + 1 − 4 x or 1 − 1 − 4 x . 2 2 But a ( 0 ) = 0 and so √ 1 − 1 − 4 x a ( x ) = 2 � � ∞ ( − 1 ) n − 1 1 2 − 1 � 2 n − 2 � � ( − 4 x ) n = 1 + n 2 2 n − 1 2 n − 1 n = 1 ∞ � 2 n − 2 � 1 � x n . = n n − 1 n = 1 So a n = 1 � 2 n − 2 � . n n − 1 Generating Functions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend