the inescapable p adics
play

The (inescapable) p -adics Alex J. Best 5/5/2018 BU Math Retreat - PowerPoint PPT Presentation

The (inescapable) p -adics Alex J. Best 5/5/2018 BU Math Retreat 2018 Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k


  1. The (inescapable) p -adics Alex J. Best 5/5/2018 BU Math Retreat 2018

  2. Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k terms (for all n ≥ k ) 1

  3. Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k terms (for all n ≥ k ) Example (Fibonacci) a 0 = 0 , a 1 = 1 and a n = a n − 1 + a n − 2 for n ≥ k = 2: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , 377 , 610 , 987 , 1597 , 2584 , 4181 , 6765 1

  4. Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k terms (for all n ≥ k ) Example (Fibonacci) a 0 = 0 , a 1 = 1 and a n = a n − 1 + a n − 2 for n ≥ k = 2: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , 377 , 610 , 987 , 1597 , 2584 , 4181 , 6765 a n grows exponentially. 1

  5. Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k terms (for all n ≥ k ) Example (A periodic sequence) a 0 = 1 , a 1 = 0 with a n = − a n − 1 − a n − 2 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , 1

  6. Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k terms (for all n ≥ k ) Example (A periodic sequence) a 0 = 1 , a 1 = 0 with a n = − a n − 1 − a n − 2 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , a n is periodic now. 1

  7. Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k terms (for all n ≥ k ) Example (Natural numbers interlaced with zeroes) a 0 = 1 , a 1 = 0 , a 2 = 2 , a 3 = 0 with a n = 2 a n − 2 − a n − 4 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 , 0 , 14 , 0 , 15 , 0 1

  8. Linear recurrence sequences Definition (Linear recurrence sequence) A linear recurrence sequence , is a sequences whose n th term is the linear combination of the previous k terms (for all n ≥ k ) Example (Natural numbers interlaced with zeroes) a 0 = 1 , a 1 = 0 , a 2 = 2 , a 3 = 0 with a n = 2 a n − 2 − a n − 4 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 , 0 , 14 , 0 , 15 , 0 not periodic but the zeroes do have a regular repeating pattern. 1

  9. The ultimate question Question What possible patterns are there for the zeroes of a linear recurrence sequence? 2

  10. The ultimate question Question What possible patterns are there for the zeroes of a linear recurrence sequence? Observation A linear recurrence sequence is the Taylor expansion around 0 of a rational function a 1 + a 2 x + · · · + a ℓ x ℓ b 1 + b 2 x · · · + b k x k with b 1 � = 0 (so that the expansion makes sense). 2

  11. Linear recurrence sequences Example x 1 − x − x 2 . ↔ Fibonacci 3

  12. Linear recurrence sequences Example x 1 − x − x 2 . ↔ Fibonacci 1 1 + x + x 2 . ↔ 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , 3

  13. Linear recurrence sequences Example x 1 − x − x 2 . ↔ Fibonacci 1 1 + x + x 2 . ↔ 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , 1 ( 1 − x 2 ) 2 . ↔ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 , 0 , 14 3

  14. Linear recurrence sequences Example x 1 − x − x 2 . ↔ Fibonacci 1 1 + x + x 2 . ↔ 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , − 1 , 1 , 0 , 1 ( 1 − x 2 ) 2 . ↔ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 , 0 , 14 ( 1 + x ) 3 − x 3 ( 1 + x ) 5 − x 5 ↔ 1 , − 2 , 3 , − 5 , 10 , − 20 , 35 , − 50 , 50 , 0 , − 175 , 625 , − 1625 , 3625 , − 7250 , 13125 , − 21250 , 29375 , − 29375 , 0 , 106250 , − 384375 , 1006250 , − 2250000 , 4500000 , − 8140625 , 13171875 , − 18203125 , 18203125 , 0 , − 65859375 , 238281250 3

  15. Consequences Observation The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes. 4

  16. Consequences Observation The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes. We can always mess up a finite amount of behaviour. So assume a n has infinitely many zeroes, what is the structure of the zero set? 4

  17. Linear recurrence sequences Example 1 ( 1 − x 2 ) 2 − ( 1 − x + 2 x 2 + 3 x 4 + 4 x 6 ) ↔ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 5

  18. Linear recurrence sequences Example 1 ( 1 − x 2 ) 2 − ( 1 − x + 2 x 2 + 3 x 4 + 4 x 6 ) ↔ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , Interlacing with 0 and shifting correspond to plugging in x 2 and multiplying by x respectively in the rational functions 5

  19. Linear recurrence sequences Example 1 ( 1 − x 2 ) 2 − ( 1 − x + 2 x 2 + 3 x 4 + 4 x 6 ) ↔ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , Interlacing with 0 and shifting correspond to plugging in x 2 and multiplying by x respectively in the rational functions 1 ( 1 − x ) 2 ↔ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 5

  20. Linear recurrence sequences Example 1 ( 1 − x 2 ) 2 − ( 1 − x + 2 x 2 + 3 x 4 + 4 x 6 ) ↔ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , Interlacing with 0 and shifting correspond to plugging in x 2 and multiplying by x respectively in the rational functions 1 ( 1 − x ) 2 ↔ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 1 ( 1 − x 2 ) 2 ↔ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 5

  21. Linear recurrence sequences 1 ( 1 − x ) 2 ↔ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 1 ( 1 − x 2 ) 2 ↔ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 1 ( 1 − x 4 ) 2 ↔ 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 0 , 6

  22. Linear recurrence sequences 1 ( 1 − x ) 2 ↔ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 1 ( 1 − x 2 ) 2 ↔ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 1 ( 1 − x 4 ) 2 ↔ 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 0 , x ( 1 − x 4 ) 2 ↔ 0 , 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 6

  23. Linear recurrence sequences 1 ( 1 − x ) 2 ↔ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 1 ( 1 − x 2 ) 2 ↔ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 1 ( 1 − x 4 ) 2 ↔ 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 0 , x ( 1 − x 4 ) 2 ↔ 0 , 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 1 + 2 x ( 1 − x 4 ) 2 ↔ 1 , 2 , 0 , 0 , 2 , 4 , 0 , 0 , 3 , 6 , 0 , 0 , 4 , 8 , 0 , 0 , 5 , 10 , 0 , 0 , 6 , 12 , 0 , 0 , 7 , 14 6

  24. Linear recurrence sequences 1 ( 1 − x ) 2 ↔ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 1 ( 1 − x 2 ) 2 ↔ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 8 , 0 , 9 , 0 , 10 , 0 , 11 , 0 , 12 , 0 , 13 1 ( 1 − x 4 ) 2 ↔ 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 0 , x ( 1 − x 4 ) 2 ↔ 0 , 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 1 + 2 x ( 1 − x 4 ) 2 ↔ 1 , 2 , 0 , 0 , 2 , 4 , 0 , 0 , 3 , 6 , 0 , 0 , 4 , 8 , 0 , 0 , 5 , 10 , 0 , 0 , 6 , 12 , 0 , 0 , 7 , 14 Still has periodic zero set, all n congruent to 2 , 3 modulo 4. 6

  25. Approach Expand into partial fractions n j m p ( x ) r ij � � q ( x ) = ( 1 − α i x ) j i = 1 j = 1 7

  26. Approach Expand into partial fractions n j m p ( x ) r ij � � q ( x ) = ( 1 − α i x ) j i = 1 j = 1 do some math:   n j m ∞ � n + j − 1 � � � � α n  x n r ij  i j − 1 n = 0 i = 1 j = 1 7

  27. Approach Expand into partial fractions n j m p ( x ) r ij � � q ( x ) = ( 1 − α i x ) j i = 1 j = 1 do some math:   n j m ∞ � n + j − 1 � � � � α n  x n r ij  i j − 1 n = 0 i = 1 j = 1 Upshot: there are polynomials A i ( n ) such that m � A i ( n ) α n a n = i . i = 1 Like that formula for Fibonacci with the golden ratio in. 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend