quantitative equidistribution in non archimedean and
play

Quantitative equidistribution in non-archimedean and complex - PowerPoint PPT Presentation

Quantitative equidistribution in non-archimedean and complex dynamics Y usuke Okuyama (Kyoto Inst. Tech., okuyama@kit.ac.jp) Complex and p -adic Dynamics; ICERN, Brown University 13 February, 2012 Berkovich projective line: Notation K :


  1. Quantitative equidistribution in non-archimedean and complex dynamics Yˆ usuke Okuyama (Kyoto Inst. Tech., okuyama@kit.ac.jp) Complex and p -adic Dynamics; ICERN, Brown University 13 February, 2012

  2. § Berkovich projective line: Notation K : algebraically closed field, complete WRT a non-trivial absolute value | · | . (either non-archimedean or archimedean. e.g. C p , C u , C ) P 1 = P 1 ( K ) : (classical) projective line [ · , · ] : the normalized chordal distance on P 1 P 1 = P 1 ( K ) : Berkovich projective line, compactifying P 1 (Fact: For archimedean K , P 1 � P 1 ) H 1 : = P 1 \ P 1 : endowed with the hyperbolic metric ρ δ ( · , · ) can : the generalized Hsia kernel on P 1 WRT S can ∈ H 1 . 1

  3. § Gauss variational approach to dynamics A rational function of degree d > 1 f : P 1 → P 1 . (Fact: this extends to P 1 → P 1 , f ( H 1 ) = H 1 , conti, surj, open, discrete) ∃ 1 (non-degenerate homogeneous polynomial) lift of f F : K 2 → K 2 (upto × c ∈ K ∗ ), i.e. for canonical projection π : K 2 → P 1 ( K ) , π ◦ F = f ◦ π and the homogeneous resultant Res F does not vanish. 2

  4. Def . The dynamical Green function on P 1 ∞ ( 1 ) 1 ∑ d j ( f j ) ∗ d log | F | − log | · | g F : = j = 0 (for ∀ c ∈ K ∗ , g cF = g F + (log | c | ) / ( d − 1) ). An upper semicontinuous F -kernel on P 1 Φ F ( z , w ) : = log δ ( z , w ) can − g F ( z ) − g F ( w ) . The F -energy of a Radon measure µ on P 1 (if exists) ∫ I F ( µ ) : = P 1 × P 1 Φ F ( z , w )d( µ × µ )( z , w ) . 3

  5. The F -equilibrium energy of (the whole) P 1 V F : = sup { I F ( µ ); µ is a prob. Radon measure on P 1 } > −∞ . A possible definition of the canonical measure µ f is Thm . There is the unique solution of Gauss variational problem WRT external field g F . Concretely, ∃ 1 probability Radon measure µ f on P 1 s.t. I F ( µ f ) = V F . (Rem: µ f is independent of choices of F ) 4

  6. § Fekete configuration in dynamics Now we can be more canonical: the f -kernel on P 1 Φ f ( · , · ) : = Φ F ( · , · ) − V F , − Φ f is called the independent of choices of F . (Rem: Arakelov Green (kernel) function of f on P 1 ) Def . A sequence ( ν n ) of positive discrete measures on P 1 is f -asymptotically Fekete on P 1 if as n → ∞ , ν n ( P 1 ) ր ∞ , ( ν n × ν n )(diag P 1 ) = o ( ν n ( P 1 ) 2 ) , ∫ 1 Φ f d( ν n × ν n ) → 0 . ν n ( P 1 ) 2 P 1 × P 1 \ diag P 1 5

  7. (Rem: this is an analogue of Gauss variational problem for positive discrete measures. Φ f ( S , S ) > 0 if S ∈ H 1 .) Def . The averaged pullback of a ∈ P 1 ∑ ( f n ) ∗ ( a ) : = deg w ( f n ) · ( a ) w ∈ f − n ( a ) ( ( a ) : the Dirac measure at a on P 1 ). The algebraic exceptional set of f (Rem: this is in P 1 ) ∪ E ( f ) : = { a ∈ P 1 ; # f − n ( a ) < ∞} . n ∈ N SAT ( f ) : superattracting periodic points of f 6

  8. Def (main quantity) . For each a ∈ P 1 and each n ∈ N , ∫ E f ( n , a ) : = 1 Φ f d(( f n ) ∗ ( a ) × ( f n ) ∗ ( a )) d 2 n P 1 × P 1 \ diag 1 P ( ( f n ) ∗ ( a ) − µ f , ( f n ) ∗ ( a ) ) = − − µ f d n d n f (: the dyn version of Favre and Rivera-Letelier’s energy). (Fact) Then • For ∀ a ∈ P 1 \ E ( f ) , (( f n ) ∗ ( a )) is f -asymp Fekete on P 1 ⇔ lim n →∞ E f ( n , a ) = 0 . • For ∀ a ∈ E ( f ) , (( f n ) ∗ ( a )) is NEVER f -asymp Fekete on P 1 . 7

  9. Another fundamental quantity Def . For ∀ a ∈ P 1 \ E ( f ) , η a , n = η a , n ( f ) : = w ∈ f − n ( a ) deg w ( f ) ∈ N . max Rem: if K has characteristic 0 , then  ≤ ( d 3 − 1) 1 / 3 ( a ∈ P 1 \ E ( f )) ,   η 1 / j   lim sup (1)  a , j = d ( a ∈ E ( f )) ,  j →∞    ( a ∈ P 1 \ SAT ( f )) , ≤ d 2 d − 2     sup η a , j (2)  = ∞ ( a ∈ SAT ( f )) .  j ∈ N   8

  10. § Main results: error estimates on Fekete Let f be a rat function on P 1 = P 1 ( K ) of degree d > 1 . Put C ( f ) : = { c ∈ P 1 ; f ′ ( c ) = 0 } , C ( f ) wan : = { c ∈ C ( f ); ( f n ( c )) is wandering under f } , CO( f ) wan : = { f n ( c ); c ∈ C ( f ) wan , n ∈ N } . (Rem: if f has char 0 , then ∑ c ∈ C ( f ) (deg c f − 1) = 2 d − 2 .) Thm 1 (principal estimates) . For ∀ a ∈ H 1 and ∀ n ∈ N , |E f ( n , a ) | ≤ Cd − n (3) for some C > 0 indep of n and loc bounded on a under ρ . 9

  11. (cont.) If in addition K has char 0 , then there is C ′ > 0 s.t. for ∀ a ∈ P 1 and ∀ n ∈ N , n n − C ′ η a , j − C a − 1 1 1 ∑ ∑ ∑ η a , j d j log d n d n d n [ f j ( c ) , a ] c ∈ C ( f ) \ f − j ( a ) j = 1 j = 1 ≤E f ( n , a ) (4) n n + C ′ η a , j + C a ≤ − 1 1 1 ∑ ∑ ∑ d j log d n . d n d n [ f j ( c ) , a ] c ∈ C ( f ) \ f − j ( a ) j = 1 j = 1 Here the constant C a ≥ 0 , which is independent of n , vanishes if a ∈ P 1 \ CO( f ) wan . 10

  12. Def . The classical omega limit set of each z 0 ∈ P 1 chordal ∩ { f n ( z 0 ); n ≥ N } ω ( z 0 ) = ω ( z 0 ) : = . N ∈ N A point z 0 ∈ P 1 is pre-recurrent if ∃ n 0 ∈ N , f n 0 ( z 0 ) ∈ ω ( z 0 ) . (The chordal open ball with center w ∈ P 1 and radius r > 0 B [ w, r ] : = { z ∈ P 1 ; [ z , w ] < r } ) Thm 1 estimates the non-Fekete locus E Fekete ( f ) : = { a ∈ P 1 ; (( f n ) ∗ ( a )) is not f -asymp Fekete on P 1 } 11

  13. from above using ∩ ∪ ∪ B [ f j ( c ) , exp( − d j )] . E wan ( f ) : = N ∈ N j ≥ N c ∈ C ( f ) wan Thm 2. Suppose K has characteristic 0 . Then E ( f ) ⊂ E Fekete ( f ) ⊂ P 1 , E Fekete ( f ) \ E ( f ) ⊂ E wan ( f ) \ E ( f ) , and E wan ( f ) is of capacity 0 . ( finite Hyllengren meas for ( d j )) . Moreover, E Fekete ( f ) is G δ -dense in ω ( c ) for every pre- recurrent c ∈ C ( f ) wan . ( so, possibly E ( f ) � E Fekete ( f )) 12

  14. § Application: quantitative equidistribution / K Let f be a rational function on P 1 = P 1 ( K ) of degree d > 1 . Favre and Rivera-Letelier’s Cauchy-Schwarz inequality is Prop . For ∀ a ∈ P 1 , C 1 -test function ∀ φ on P 1 and ∀ n ∈ N , φ, ( f n ) ∗ ( a ) � �� � � � � � − µ f � � d n � � � �  � φ, φ � 1 / 2 √ ( a ∈ H 1 ) , |E f ( n , a ) |     ≤ √  C max { Lip( φ ) , � φ, φ � 1 / 2 } ( a ∈ P 1 ) . |E f ( n , a ) | + nd − n η a , n    Here C > 0 is independent of a ∈ P 1 , φ and n . 13

  15. Theorem 1 establishes a quantitative equidistribution in terms of the proximity of wandering crit orbits to a ∈ P 1 . Thm 3 (Special case) . Suppose that K has characteristic 0 . Then there is C > 0 s.t. for ∀ a ∈ P 1 excluding E wan ( f ) of capacity 0 and ∀ n ∈ N large enough, |E f ( n , a ) | ≤ Cnd − n η a , n , (5) and there is C ′ > 0 s.t. for C 1 -test function ∀ φ on P 1 , ∀ a ∈ P 1 \ E wan ( f ) and ∀ n ∈ N large enough, φ, ( f n ) ∗ ( a ) � �� � √ � � � ≤ C ′ max { Lip( φ ) , � φ, φ � 1 / 2 } nd − n η a , n � � − µ f � � d n � � � ( Recall that sup n ∈ N η a , n ≤ d 2 d − 2 if in addition a � SAT ( f )) . 14

  16. (cont.) On the other hand, for ∀ a 0 ∈ P 1 excluding chordal PC( f ) : = { f n ( c ); c ∈ C ( f ) , n ∈ N } , there are r 0 > 0 and N = N ( a 0 ) s.t. for ∀ a ∈ B [ a 0 , r 0 ] , C 1 -test function ∀ φ on P 1 , ∀ k > N , the same (but locally uniform) estimate φ, ( f n ) ∗ ( a ) √ � �� � � � � ≤ C ′ max { Lip( φ ) , � φ, φ � 1 / 2 } � � nd − n . − µ f � � d n � � � √ d − n ) estimate holds for ∀ a ∈ Rem . For K � C , the better O ( P 1 at which f is semihyp. (cf. D. Drasin and Ok, BLMS 2007 ). 15

  17. § Arithmetic application / global fields For a number field or a function field k , when f has its coefficients in k , the dynamics on algebraic points f : P 1 ( k ) → P 1 ( k ) , is also interesting. Fix a non-trivial absolute value u on k , and set K = C u . The dynamical Diophantine approximation (Silverman 1993, Szpiro and Tucker 2005): For ∀ a ∈ P 1 ( k ) \ E ( f ) and wandering ∀ z ∈ P 1 ( k ) , 1 d n log[ f n ( z ) , a ] u = 0 . lim n →∞ 16

  18. Since ( E ( f ) ⊂ SAT ( f ) ⊂ ) C ( f ) ⊂ P 1 ( k ) , consequently E wan ( f ) u ∩ P 1 ( k ) ⊂ E ( f ) , (6) and Theorem 3 recovers (in a purely local manner) Favre and Rivera-Letelier’s arithmetic quantitative equidistribution: Under the above arithmetic setting, there is C > 0 s.t. for ∀ a ∈ P 1 ( k ) \ E ( f ) , C 1 -test function ∀ φ on P 1 ( C u ) and ∀ n ∈ N large enough, φ, ( f n ) ∗ ( a ) � �� � √ � � � ≤ C ′ max { Lip( φ ) , � φ, φ � 1 / 2 } � � nd − n η a , n . − µ f ,u � � d n � � � Rem . By Thm 2 with (6), also E Fekete ( f ) u ∩ P 1 ( k ) = E ( f ) . 17

  19. § In complex dynamics / C Let f be a rational function on P 1 ( C ) of degree > 1 . Q . When E ( f ) = E Fekete ( f ) ? Cor 1. If ∃ Cremer periodic points, Siegel disks or Herman rings of f , then E ( f ) � E Fekete ( f ) . If f is geometrically finite, then E Fekete ( f ) = E ( f ) . Rem . ∃ semihyperbolic real cubic polynomial f such that E Fekete ( f ) ∩ J ( f ) � ∅ , so E ( f ) � E Fekete ( f ) . 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend