howe s correspondence and characters for dual pairs over
play

Howes correspondence and characters for dual pairs over Archimedean - PowerPoint PPT Presentation

Howes correspondence and characters for dual pairs over Archimedean and non-Archimedean fields Tomasz Przebinda University of Oklahoma Norman, OK, USA Symmetries in Geometry, Analysis and Spectral Theory, Paderborn, July 23-27, 2018 On


  1. Howe’s correspondence and characters for dual pairs over Archimedean and non-Archimedean fields Tomasz Przebinda University of Oklahoma Norman, OK, USA Symmetries in Geometry, Analysis and Spectral Theory, Paderborn, July 23-27, 2018 On the occasion of Joachim Hilgert’s 60th Birthday Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 1 / 20

  2. The Cauchy determinantal identity, 1812 � | h k 1 h k 2 ... h k n | | h ′ k 1 h ′ k 2 ... h ′ k n | 1 � j ) = | h n − 1 h n − 2 ... h 0 | · 1 ≤ i , j ≤ n ( 1 − h i h ′ | h ′ n − 1 h ′ n − 2 ... h ′ 0 | k 1 > k 2 >...> k n   h k 1 1 h k 2 1 ... h k n 1   h k 1 2 h k 2 2 .. . h k n   | h k 1 h k 2 ... h k n where n | = det  2   ..................  h k 1 n h k 2 n ... h k n n Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 2 / 20

  3. An interpretation of Cauchy’s identity The formula ω ( g , g ′ ) x = gxg ′ t ( x ∈ M n , n ( C ) , ( g , g ′ ) ∈ U n × U n ) defines a representation ω of the group U n × U n on space H ω = Sym ( M n , n ( C )) of the symmetric tensors of M n , n ( C ) . Taking the trace of of ω ( g , g ′ ) , one obtains the character formula � (Π = Π ′ ∈ � Θ ω ( g , g ′ ) = Θ Π ( g )Θ Π ′ ( g ′ ) U n ) . Π Hence one deduces the decomposition � H ω = H Π ⊗ H Π ′ . Π We get a correspondence of representations Π ↔ Π ′ and a character formula � Θ ω ( g , g ′ )Θ Π ′ ( g ′− 1 ) dg . Θ Π ( g ) = U n Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 3 / 20

  4. Gaussians and Weil factors on a field F = R or a p -adic field (finite commutative extension of Q p ), p � = 2; dx the Haar measure on F normalized so that the volume of the closed unit ball is 1. If F = R , then choose χ ( r ) = e 2 π ir , r ∈ R , and define � χ ( 1 2 ( a + ib ) x 2 ) dx , γ ( a ) = lim b → 0 + R | a | − 1 π i 4 sgn ( a ) 2 γ W ( a ) , ( a ∈ R \ { 0 } ) . = γ W ( a ) = e If F � = R , then choose a unitary character χ : F → C × of the additive group F , and define � χ ( 1 2 ( a ) x 2 ) dx , γ ( a ) = lim r →∞ x ∈ F , | x | < r 2 γ W ( a ) , γ W ( a ) 8 = 1 | a | − 1 ( a ∈ F \ { 0 } ) . = γ W is the Weil factor. Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 4 / 20

  5. Gaussians and Weil factors on a vector space U finite dimensional vector space over F with Haar measure µ U ; q a nondegenerate quadratic form on U. If F = R , then define � χ ( 1 γ ( q ) = 2 ( q + ip )( u )) d µ U ( u ) , lim p → 0 U | γ ( q ) | = χ ( 1 γ ( q ) γ W ( q ) = 4 sgn ( q )) . If F � = R , then define � χ ( 1 γ ( q ) = 2 q ( u )) d µ U ( u ) , lim r →∞ u ∈ U , | u | < r γ ( q ) | γ ( q ) | , γ W ( a ) 8 = 1 . γ W ( q ) = Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 5 / 20

  6. Determinants ( W , �· , ·� ) ; Sp ∋ g . If F = R , pick J ∈ sp , J 2 = − I , B ( · . · ) = � J · , ·� > 0. Define det ( g − 1 : W / Ker ( g − 1 ) → ( g − 1 ) W ) = det ( � ( g − 1 ) w i , w j � 1 ≤ i , j ≤ m ) , where w 1 , . . . , w m is any B -orthonormal basis of Ker ( g − 1 ) ⊥ B ⊆ W. If F � = R , fix a lattice L ⊆ W and the corresponding norm N L ( w ) = inf {| a | − 1 : a ∈ F × , aw ∈ L} ( w ∈ W ) . Let o F ⊆ F denote the ring of integers. Define det ( g − 1 : W / Ker ( g − 1 ) → ( g − 1 ) W ) F ) 2 ∈ F × / ( o × F ) 2 , = det ( � ( g − 1 ) w i , w j � 1 ≤ i , j ≤ m )( o × where w 1 , . . . , w m are such that the spaces F w 1 , . . . , F w m , Ker ( g − 1 ) span W and are N L -orthogonal, i.e. N L ( a 1 w 1 + · · · + a m w m + w ) = max { N L ( a 1 w 1 ) , . . . , N L ( a m w m ) , N L ( w ) } . Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 6 / 20

  7. The Metaplectic Group [A.-M. Aubert and T.P ., 2014] For g , g 1 , g 2 ∈ Sp , let Θ 2 ( g ) = γ ( 1 ) 2 dim ( g − 1 ) W − 2 � � 2 γ ( det ( g − 1 : W / Ker ( g − 1 ) → ( g − 1 ) W )) �� � � � Θ 2 ( g 1 g 2 ) � � C ( g 1 , g 2 ) = � γ W ( q g 1 , g 2 ) , � Θ 2 ( g 1 )Θ 2 ( g 2 ) where q g 1 , g 2 ( u ′ , u ′′ ) = 1 2 � ( g 1 + 1 )( g 1 − 1 ) − 1 u ′ , u ′′ � + 1 2 � ( g 2 + 1 )( g 2 − 1 ) − 1 u ′ , u ′′ � ( u ′ , u ′′ ∈ ( g 1 − 1 ) W ∩ ( g 2 − 1 ) W ) . The Metaplectic Group � � g = ( g , ξ ) ∈ Sp × C , ξ 2 = Θ 2 ( g ) � ˜ Sp = ( g 1 , ξ 1 )( g 2 , ξ 2 ) = ( g 1 g 2 , ξ 1 ξ 2 C ( g 1 , g 2 )) . Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 7 / 20

  8. Normalization of Haar measures on vector spaces Let F = R . For any subspace U ⊆ W we normalize the Haar measure µ U on U so that the volume of the unit cube with respect to form B is 1. If V ⊆ U, then B induces a positive definite form on the quotient U / V and hence a normalized Haar measure µ U / V so that the volume of the unit cube is 1. Let F � = R . For any subspace U ⊆ W we normalize the Haar measure µ U on U so that the volume of the lattice L ∩ U is 1. If V ⊆ U, then we normalized Haar measure µ U / V so that the volume of the lattice ( L ∩ U + V ) / V is 1. Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 8 / 20

  9. The Weil Representation W = X ⊕ Y a complete polarization. Op : S ∗ ( X × X ) → Hom ( S ( X ) , S ∗ ( X )) � K ( x , x ′ ) v ( x ′ ) d µ X ( x ′ ) . Op ( K ) v ( x ) = X Weyl transform K : S ∗ ( W ) → S ∗ ( X × X ) � � 1 � f ( x − x ′ + y ) χ K ( f )( x , x ′ ) = 2 � y , x + x ′ � d µ Y ( y ) . Y An imaginary Gaussian on ( g − 1 ) W � 1 � 4 � ( g + 1 )( g − 1 ) − 1 χ c ( g ) ( u ) = χ u , u � ( u = ( g − 1 ) w , w ∈ W ) . � �� � c ( g ) g = ( g , ξ ) ∈ � For ˜ Sp define Θ(˜ T (˜ g ) = Θ(˜ ω (˜ g ) = Op ◦ K ◦ T (˜ g ) = ξ, g ) χ c ( g ) µ ( g − 1 ) W , g ) . ( ω, L 2 ( X )) is the Weil representation of � Sp attached to the character χ . Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 9 / 20

  10. Dual Pairs Subgroups G , G ′ ⊆ Sp ( W ) acting reductively on W. G ′ is the centralizer of G in Sp and G is the centralizer of G ′ in Sp . G ′ ⊆ � The preimages � G , � Sp ( W ) are also mutual centralizers in the metaplectic group. For F = R : G , G ′ stable range GL n ( D ) , GL m ( D ) n ≥ 2 m O p , q , Sp 2 n ( R ) p , q ≥ 2 n Sp 2 n ( R ) , O p , q n ≥ p + q O p ( C ) , Sp 2 n ( C ) p ≥ 4 n Sp 2 n ( C ) , O p ( C ) n ≥ p U p , q , U r , s p , q ≥ r + s Sp p , q , O ∗ p , q ≥ n 2 n O ∗ 2 n , Sp p , q n ≥ 2 ( p + q ) Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 10 / 20

  11. Howe’s Correspondence [Howe, Waldspurger, Gan, Gan-Sun] R ( � G ) equivalence classes of irreducible admissible representations. R ( � G , ω ) ⊆ R ( � G ) representations realized as quotients of S ( X ) by closed � G -invariant subspaces. For Π ∈ R ( � G , ω ) let N Π ⊆ S ( X ) be the intersection of all the closed � G -invariant subspaces N ⊆ S ( X ) such that Π is equivalent to S ( X ) / N . Then S ( X ) / N Π is a representation of both � G and � G ′ . It is equivalent to Π ⊗ Π ′ 1 , G ′ has a unique 1 of � 1 of � for some representation Π ′ G ′ . The representation Π ′ irreducible quotient Π ′ ∈ R ( � G ′ , ω ) . Conversely, starting with Π ′ ∈ R ( � G ′ , ω ) and applying the above procedure with the roles of G and G ′ reversed, we arrive at the representation Π ∈ R ( � G , ω ) . The resulting bijection → Π ′ ∈ R ( � R ( � G ′ , ω ) G , ω ) ∋ Π ← is called Howe’s correspondence, or local θ correspondence, for the pair G , G ′ . Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 11 / 20

  12. The wave front set of a distribution for F = R Let V be a finite dimensional vector space over R . Recall the Fourier transform � c ( V ) , v ∗ ∈ V ∗ ) . F ( φ )( v ∗ ) = φ ( v ) χ ( − v ∗ ( v )) d µ V ( v ) ( φ ∈ C ∞ V The wave front set of a distribution u on V at a point v ∈ V , denoted WF v ( u ) , is the complement of the set of all pairs ( v , v ∗ ) , v ∗ ∈ V ∗ , for which there is a test function φ ∈ C ∞ c ( V ) with φ ( v ) � = 0 and an open cone Γ ⊆ V ∗ containing v ∗ such that |F ( φ u )( v ∗ 1 ) | ≤ C N ( 1 + | v ∗ 1 | ) − N ( v ∗ 1 ∈ Γ , N = 0 , 1 , 2 , ... ) . This notion behaves well under diffeomorphisms. So for any distribution u on a manifold M , one may define WF ( u ) ⊆ T ∗ M as the union of the wave front sets at the individual points. Tomasz Przebinda (University of Oklahoma) Howe’s correspondence and characters 12 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend