extracting excited mesons from the finite volume
play

Extracting Excited Mesons from the Finite Volume Michael D oring - PowerPoint PPT Presentation

Extracting Excited Mesons from the Finite Volume Michael D oring Meson 2014, Krak ow, Poland, May 29-June 3, 2014 The cubic lattice Side length L , V = L 3 ( + L t ), periodic boundary conditions ! ( x ) = ( x + e i L ) finite


  1. Extracting Excited Mesons from the Finite Volume Michael D¨ oring Meson 2014, Krak´ ow, Poland, May 29-June 3, 2014

  2. The cubic lattice Side length L , V = L 3 ( + L t ), periodic boundary conditions ! Ψ( x ) = Ψ( x + ˆ e i L ) → finite volume effects → Infinite volume L → ∞ extrapolation Lattice spacing a → finite size effects Modern lattice calculations: a ≃ 0 . 07 fm → p ∼ 2 . 8 GeV → (much) larger than typical hadronic scales; not considered here. Unphysically large quark/hadron masses → chiral extrapolation required.

  3. Resonances decaying on the lattice Eigenvalues in the finite volume Window of acceptable L Avoided level crossing (resonance OR threshold) increasingly difficult to measure ) s ( e c E [MeV] n a n o s e R lowest threshold -bL bound state: E(L)~M B +a e -1 ] L [M π

  4. L¨ uscher equation Periodic boundary conditions e i L ) = exp ( i L q i ) Ψ( x ) ⇒ q i = 2 π ! Ψ( x ) = Ψ( x + ˆ L n i , n i ∈ Z , i = 1 , 2 , 3 Integrals → Sums � d 3 � q q | 2 ) → 1 q = 2 π � q | 2 ) , n ∈ Z 3 (2 π ) 3 g ( | � g ( | � � L � n , � L 3 � n L¨ uscher equation p cot δ ( p ) = − 8 π E � ˜ G ( E ) − Re G ( E ) � p : c.m. momentum E : scattering energy ˜ G − Re G : known kinematical function → one phase at one energy.

  5. Moving frames to get more levels ( Σ ∗ → π Λ ) Operators with non-zero momentum of the center-of-mass: � P = � p 1 + � p 2 � = 0 Rummukainen, Gottlieb, NPB (1995)

  6. Breaking of cubic symmetry through boost q ∗ boosted with P = (0 , 0 , 0) → 2 π Example: Lattice points � L (0 , 0 , 2) :

  7. Need for an interpolation in energy ( K π scattering)

  8. More need for an interpolation in energy (coupled channels) Twisting the boundary conditions [Bernard, Lage, Meißner, Rusetsky, JHEP (2011), M.D., Meißner, Oset, Rusetsky, EPJA (2011)] S -wave, coupled-channels Periodic B.C.: Twisted B.C.: ππ , ¯ e i L ) = e i θ i Ψ( � KK → f 0 (980) . Ψ( � x + ˆ e i L ) = Ψ( � x ) Ψ( � x + ˆ x ) Three unknown transitions Periodic in 2 dim.: Periodic/antiperiodic: V ( ππ → ππ ) V ( ππ → ¯ KK ) V ( ¯ KK → ¯ KK ) θ i = 0 θ i = π /2 θ i = π 1100 E [MeV] _ θ 1 = 0 θ 1 = 0 KK 1000 900 2 2.5 3 3.5 -1 ] L [M π Twisted B.C. for the s -quark: θ 2 = 0 θ 2 = π u ( � x + ˆ e i L ) = u ( � x ) d ( � x + ˆ e i L ) = d ( � x ) e i L ) = e i θ i s ( � s ( � x + ˆ x )

  9. Energy interpolation through unitarized ChPT [M.D., Meißner, JHEP (2012)] using IAM [Oller, Oset, Pel´ aez, PRC (1999)] Unitary extension of ChPT, can be matched to ChPT order-by-order. Table: Fitted values for the L i [ × 10 − 3 ] and q max [MeV]. L 1 L 2 L 3 L 4 0 . 873 +0 . 017 0 . 627 +0 . 028 − 0 . 710 +0 . 022 − 3 . 5 [fixed] − 0 . 028 − 0 . 014 − 0 . 026 L 5 L 6 + L 8 L 7 q max [MeV] 2 . 937 +0 . 048 1 . 386 +0 . 026 0 . 749 +0 . 106 981 [fixed] − 0 . 094 − 0 . 050 − 0 . 074 A resonance is characterized by its (complex) pole position and residues, corresponding to resonance mass, width, and branching ratio. Table: Pole positions z 0 [MeV] and residues a − 1 [ M π ] in different channels. I , L , S : isospin, angular momentum, strangeness. I L S Resonance sheet z 0 [MeV] a − 1 [ M π ] a − 1 [ M π ] − 31 − i 19 ( ¯ 0 0 0 σ (600) 434+ i 261 KK ) − 30+ i 86 ( ππ ) pu 16 − i 79 ( ¯ 0 0 0 f 0 (980) pu 1003+ i 15 KK ) − 12+ i 4 ( ππ ) 1 / 2 0 − 1 κ (800) 815+ i 226 − 36+ i 39 ( η K ) − 30+ i 57 ( π K ) pu − 10 − i 107 ( ¯ 1 0 0 a 0 (980) pu 1019 − i 4 KK ) 21 − i 31 ( πη ) − 2+ i 0 ( ¯ 0 1 0 φ (1020) p 976+ i 0 KK ) — 1 / 2 1 − 1 K ∗ (892) 889+ i 25 − 10+ i 0 . 1 ( η K ) 14+ i 4 ( π K ) pu − 11+ i 2 ( ¯ 1 1 0 ρ (770) pu 755+ i 95 KK ) 33+ i 17 ( ππ )

  10. Fit to meson-meson PW data using unitary ChPT with NLO terms [M.D., Meißner, JHEP (2012)] using IAM [Oller, Oset, Pel´ aez, PRC (1999)] 80 0 250 0 ( π K --> π K) [deg] 0 ( π K --> π K) [deg] -5 0 ( ππ --> ππ ) [deg] 60 200 -10 f 0 (980) 40 150 κ (800) -15 σ (600) 100 δ 1/2 20 δ 0 δ 3/2 -20 50 0 0 400 600 800 1000 700 800 900 1000 1100 700 800 900 1000 1100 0 200 200 1 ( π K --> π K) [deg] 0 ( ππ --> ππ ) [deg] 1 ( ππ --> ππ ) [deg] -10 150 150 -20 100 100 K*(892) ρ (770) -30 δ 2 δ 1/2 50 δ 1 50 -40 0 0 400 600 800 1000 700 800 900 1000 1100 1200 400 600 800 1000 E [MeV] E [MeV] E [MeV]

  11. Prediction of levels (also for M π � = M phys . ) π 2.5 3 3.5 2 2.5 3 3.5 2 (I,L,S)=(0,0,0) 1200 (I,L,S)=( ½,0,-1) 1200 (I,L,S)=(0,1,0) (I,L,S)=(2,0,0) [ σ (600), f 0 (980)] [ φ (1020)] [ κ (800)] [ ππ repulsive] 1400 1000 1000 1400 1200 E [MeV] E [MeV] 800 800 1200 1000 600 600 800 400 400 1000 1200 (I,L,S)=(1,1,0) (I,L,S)=(1,0,0) (I,L,S)=(½,1,-1) (I,L,S)=(3/2,0,-1) [ ρ (770)] 1100 [a 0 (980)] [K*(892)] [ π K repulsive] 1400 1400 1000 1000 1200 1200 E [MeV] E [MeV] 800 900 1000 1000 600 800 800 800 700 400 600 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 -1 ] -1 ] -1 ] -1 ] L [M π L [M π L [M π L [M π [M.D., Meißner, JHEP (2012) Loops in t - and u -channel (1-loop calculation): [Albaladejo, Rios, Oller, Roca, arXiv: 1307.5169; Albaladejo, Oller, Oset, Rios, Roca, JHEP (2013)]

  12. Reconstruction of the κ (800) stabilized by ChPT Fit potential [ V 2 ≡ V LO known/fixed from f π , f K , f η ; s ≡ E 2 ] � − 1 � V 2 − V fit V fit = = a + b ( s − s 0 ) + c ( s − s 0 ) 2 + d ( s − s 0 ) 3 + · · · 4 V fit , 4 V 2 2 950 80 κ (800) κ (800) 0 , s 1 ) fit (s 900 0 ( π K --> π K) [deg] 60 0 , s 1 , s 2 ) fit 850 (s E [MeV] 800 0 , s 1 , s 2 , s 3 ) fit 40 (s 750 700 δ 1/2 20 650 600 0 2 2.5 3 3.5 4 700 800 900 1000 1100 -1 ] E [MeV] L [M π Figure: Solid line: Actual phase shift. Error Figure: Pseudo lattice-data and bands of the ( s 0 , s 1 ) , ( s 0 , s 1 , s 2 ) , and ( s 0 , s 1 , s 2 ) fit to those data with ( s 0 , s 1 , s 2 , s 3 ) fits. uncertainties (bands).

  13. The κ (800) pole 300 0 , s 1 , s 2 , s 3 ) fit 0 , s 1 ) fit area (s area (s 0 , s 1 , s 2 ) fit, ∆ E=5MeV area (s 250 0 , s 1 , s 2 ) fit Im E [MeV] area (s 200 Actual pole position 0 , s 1 , s 2 , s 3 ) in V 4 fit Fit (s 0 , s 1 , s 2 ) in V 4 fit Fit (s 0 , s 1 ) in V 4 fit Fit (s 150 0 ) in V 4 fit Fit (s 700 750 800 850 900 950 Re E [MeV]

  14. Coupled-channel systems with thresholds [M.D., Meißner, Oset/Rusetsky, EPJA 47 (2011)] Need for an interpolation in energy ( → Unitarized ChPT,. . . ) Expand a two-channel transition V in energy ( i , j : ππ , ¯ KK ): V ij ( E ) = a ij + b ij ( E 2 − 4 M 2 K ) Include model-independently known LO contribution in a , b . Or even NLO contributions (7 LECs: more fit parameters). lattice data & fit extracted phase shift f 0 (980) pole position 1150 250 25 1100 0 ( ππ −−> ππ ) [deg] increased precision for δ 20 1050 200 Im E [MeV] E [MeV] KK 1000 15 f 0 (980) 950 150 10 900 δ 0 850 5 100 KK KK 1.6 1.8 2 2.2 2.4 2.6 0 850 900 950 1000 1050 1100 980 990 1000 1010 -1 ] L [M π E [MeV] Re E [MeV]

  15. Mixing of partial waves in boosted multiple channels: σ (600) [M.D., E. Oset, A. Rusetsky, EPJA (2012)] ππ & ¯ KK in S -wave, ππ in D -wave. Organization in Matrices ( A + 1 ), e.g. 420 � 800 P = (2 π/ L )(0 , 0 , 1) , (2 π/ L )(1 , 1 , 1) , and (2 π/ L )(0 , 0 , 2) : 400 750  V (11) V (12)  0 S S E [MeV] 380 700 V (21) V (22) V = 0   S S V (22) 0 0 360 650 D   G R (1) ˜ 0 0 00 , 00 600 340 G R (2) ˜ G R (2) ˜ ˜ = 0 G   00 , 00 00 , 20   G R (2) ˜ G R (2) ˜ 550 0 2 3 2 2.5 20 , 00 20 , 20 -1 ] -1 ] L [M π L [M π Phase extraction: Expand and fit V S , Solid: Levels from A + V D simultaneously to different 1 . representations, as in case of Non-solid: Neglecting the D -wave. multi-channels (reduction of error).

  16. Phase shifts from a moving frame: the σ (600) Comparison: Variation of L vs moving frames 300 The first two levels 0 , s 1 ,s 2 ,s 3 ) fit area (s for the first five boosts: 20 pts., ∆ E=10 MeV : Pseudo-data [10 MeV error] 250 Im E [MeV] P=2 π /L x ... 900 (0,0,0) (0,0,1) 800 200 (0,1,1) Actual position 0 , s 1 , s 2 , s 3 ) fit (1,1,1) Central, (s 0 , s 1 , s 2 ) fit 700 (0,0,2) Central, (s Level 2 Moving frame: 2 L’s 0 , s 1 ) fit Central, (s 150 E [MeV] 600 300 500 250 Im E [MeV] 400 Level 1 0 , s 1 ,s 2 ,s 3 ) fit area (s 11 pts., ∆ E=10 MeV 300 200 2 2.5 3 3 : 6 L’s -1 ] Vary volume L L [M π 150 300 350 400 450 500 550 Re E [MeV]

  17. Asymmetric boxes & boosts M.D., R. Molina, GWU Lattice Group [A. Alexandru et al.] K*(892) 1 ( π K --> π K) [deg] 100 M π =138 MeV (891,48) M π =230 MeV (922,32) 50 δ 1/2 M π =305 MeV (941,16) L x = L , L y = L , L z = x L 0 x = 1 , 1 . 26 , 2 . 04 860 880 900 920 940 2 π � E [MeV] L P = (0 , 0 , 0) , (0 , 0 , 1) → Resonance not covered by eigenlevels. → Find other boosts/spatial setups.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend