quantum transport of transport of quantum transport of
play

Quantum Transport of Transport of Quantum Transport of Quantum - PowerPoint PPT Presentation

Quantum Transport of Transport of Quantum Transport of Quantum Carbon Nanotube Nanotube & & Carbon Bio Sensor Applications Bio Sensor Applications Kazuhiko Matsumoto Osaka University Japan 2.3E-8 4 Drain Voltage (mV) 1.15E-8


  1. Quantum Transport of Transport of Quantum Transport of Quantum Carbon Nanotube Nanotube & & Carbon Bio Sensor Applications Bio Sensor Applications Kazuhiko Matsumoto Osaka University Japan 2.3E-8 4 Drain Voltage (mV) 1.15E-8 2 0 0 -2 -1.15E-8 -4 -2.3E-8 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V)

  2. Contents Drain Source 1) Carbon Nanotube Quantum Devices Carbon 1. Seamless Transition of Coulomb Blockade Nanoatube Transport to Coherent Transport 73nm 100 4E-6 3.9E-6 80 2) Application of FET Type Bio sensor 3.4E-6 60 Drain Voltage (mV) 40 2.9E-6 1. Top Gate FET type Bio Sensor dI D /dV D (S) 20 2.4E-6 0 1.9E-6 2. Direct modification type Bio-Sensor -20 1.4E-6 -40 9E-7 -60 50 3) Conclusions 4E-7 -80 150 45 1E-5 -1E-7 -100 100 40 -20 -19 -18 -17 -16 -15 Drain Voltage (mV) 5E-6 50 35 d 2 I D /dV D Gate Voltage (V) 0 0 30 -50 Water proof 25 -5E-6 resist 2 -100 20 -1E-5 -150 SiN x -25 -24 -23 -22 -21 -20 15 -25 -20 -15 -10 -5 Gate Voltage (V) SiO 2 IgE Gate Voltage (V) n + -Si Aptamer Aptamer Deby Deby IgE Length Length Drain Back gate ~ 3 nm 1 ~ 2 nm CNT Catal Source yst SiO 2 Si

  3. Carbon Nanotube Quantum Device Carbon Nanotube Quantum Device Carbon Nanotube Quantum Device Carbon Nanotube Quantum Device Carbon Nanotube Source Drain h + Carbon Drain Source Nanoatube 73nm CNT 73nm Quantum Well Drain Drain Source h+ E F E F Drain e/C Source SiO 2 SiO 2 Si Sub. Si Sub. Back Gate Back Gate

  4. Coulomb Blockade Transport : Coulomb Oscillation Coulomb Blockade Transport : Coulomb Oscillation I D V D =11 mV Period of peaks A Δ V G =3V 50 Drain Drain Source V G ~ 0V 40 SiO 2 SiO 2 Si Sub. Si Sub. 30 Back Gate Back Gate V G 20 7.3 K CNT 10 V D =11 mV h+ Source Drain 0 E F E F Carbon -10 0 10 20 Drain e/C Source Nanoatube Gate Voltage V G (V) 73nm

  5. Coulomb Blockade Coulomb Blockade Drain Source Condition Condition 50 CNT CNT Δ V G =3V 40 h+ h + 30 E F E F e/C Drain 20 Source Drain Source 7.3 K 10 V D =11 mV Tunnel Res. R T >> Quantum Res. R Q 0 V G ~ 0 - 1 0 0 1 0 2 0 Heisenberg Rule Δ E •Δ t ≈ h C : Tunnel Capacitance Δ E ≈ h / Δ t = h / CR T R T : Tunnel Resistance Where Δ E << E C (Charging Energy) Quantum T >> h / e 2 = 25.8 k Ω≡ R T << e 2 /2 C Resistance ∴ h / CR 2e 2 =13k Ω =R Q R Q

  6. Coulomb Blockade Coulomb Blockade Drain Source Condition Condition 50 CNT CNT Δ V G =3V 40 h+ h + 30 E F E F e/C Drain 20 Source Drain Source 7.3 K 10 V D =11 mV Tunnel Res. R T >> Quantum Res. R Q 0 - 1 0 0 1 0 2 0 At V G ~0V Large depletion layer at drain Large tunnel resistance R T >R Q Coulomb Confinement

  7. Coexistence of Coulomb Blockade Transport Coexistence of Coulomb Blockade Transport & Coherent Transport & Coherent Transport I D Period of peaks V D =11 mV Δ V G =3V A 50 Drain Drain Source 40 SiO 2 SiO 2 30 Si Sub. Si Sub. CNT Back Gate Back Gate 20 V G 7.3 K h+ 10 V D =11 mV Drain Source EF EF 0 -40-30-20-10 0 10 20 30 40 Drain e/C Source Carbon Gate Voltage (V) Nanoatube 73nm

  8. Coexistence of Coulomb Blockade Transport Coexistence of Coulomb Blockade Transport & Coherent Transport & Coherent Transport Enlargement Period of peaks Δ V G =0.65V 50 50 Δ V G =0.65 V Δ V G =3V 45 40 40 30 35 7.3 K 30 20 V D =11 mV 25 10 20 0 15 -25 -20 -15 -10 -5 -40-30-20-10 0 10 20 30 40 Gate Voltage (V) Gate Voltage (V)

  9. Coexistence of Coulomb Blockade Transport Coexistence of Coulomb Blockade Transport & Coherent Transport & Coherent Transport Coherent Transport = Resonant Tunneling of Hole Coherent Oscillation Quantum Energy Level Discrete Energy Level 50 Δ V G =0.65 V Hole 45 40 Δ E Q Δ V G 35 30 25 Drain Source 20 4 μ m SiO 2 73nm Coulomb Oscillation 15 -25 -20 -15 -10 -5 Gate Electrode Gate Voltage (V)

  10. Coexistence of Coulomb Blockade Transport Coexistence of Coulomb Blockade Transport & Coherent Transport & Coherent Transport Coherent Transport = Resonant Tunneling of Hole Coherent Oscillation Coulmb CNT 50 Gap Δ V G =0.65 V Δ V G =0.65 V 45 Quantum h+ Level 40 35 EF EF 30 e/C Drain Source 25 20 Coulomb Oscillation 15 -25 -20 -15 -10 -5 Gate Voltage (V)

  11. Coherent Transport of Hole : Quantum Interference Coherent Transport of Hole : Quantum Interference Enlargement Period of peaks Δ V G =0.65V 0.2 0.18 7.2 K Drain current (nA) 7.3 K 7.3 K 0.16 Drain current (nA) 0.15 0.14 0.12 0.1 0.1 0.08 0.05 0.06 0 0.04 -25 -24 -23 -22 -21 -20 -40 -20 0 20 40 Gate Voltage (V) Gate Voltage (V)

  12. Coherent Transport of Hole : Quantum Interference Coherent Transport of Hole : Quantum Interference Discrete Energy Level Quantum Energy Level Coherent Oscillation Hole 0.18 7.3 K Δ E Q Δ V G 0.16 Drain current (nA) 0.14 0.12 Drain Source 0.1 4 μ m SiO 2 73nm 0.08 Gate Electrode 0.06 ν 0.04 h α Δ = -25 -24 -23 -22 -21 -20 Δ V G F E Q Gate Voltage (V) 2 Le L=55nm L=73nm Δ V G =0.65V Calculated SEM Observation

  13. Why NO Coulomb oscillation Quite thin depletion layer at drain Quite small tunnel resistance R T ~ R Q V G ~ -22V No Coulomb Confinement Coherent Transport only CNT CNT 0.18 7.3 K 0.16 + h 0.14 h + 0.12 EF EF 0.1 Drain Source 0.08 Drain Source 0.06 0.04 -25 -24 -23 -22 -21 -20 V G ~ -20 Gate Voltage (V) Drain Source Tunnel Res. R T << Quantum Res. R Q

  14. Conductance of Barrier G Conductance of Barrier G CNT h+ G : Conductance of Barrier Γ Γ 2 2 ( ) e e E F E = = ε F L R G T ( ) π π ε + Γ + Γ 0 2 Drain h 2 h Source 4 h h L R T 0 ( ε ) : Tunneling Probability Γ : Transfer Probability I ν h dE dk h ( ) Γ = φ = + Γ= Γ L + Γ R = T T φ 0 L R dk d 2 L FWHM Γ = Γ L Γ + 2 L + = Γ R T T T 0 ( ε ) = T L + T R = Γ 2 L ν L R h h v V Resonant Peak Γ= Γ L + Γ R T 0 ( ε ) G

  15. Conductance of Barrier G Conductance of Barrier G CNT h+ For Low Vg E Γ= Γ L + Γ R = 20mV F E F Drain Source T 0 ( ε ) : Tunneling Probability 2 L (Γ L + Γ R ) = 1.53x10 -1 T 0 ( ε ) = h v F I v F =3x10 7 m/sec 20mV G : Conductance of Barrier FWHM Γ = Γ L Γ + e 2 T 0 ( ε ) = 11.8 μ S G = R π h V R : Tunneling Resistance Resonant Peak R = 1/G = 85 k Ω >> R 0 = 13 k Ω

  16. Tunneling Resistance R by Different V G Tunneling Resistance R by Different V G Drain Source For Low Vg CNT R : Tunneling Resistance h + R = 85 k Ω ~ 7 R 0 >> R 0 = 13 k Ω Drain Source Coulomb confinement Coulomb Oscillation For High Vg CNT R : Tunneling Resistance h + R = 42 k Ω ~ 3 R 0 ~ R 0 = 13 k Ω Drain Source NO Coulomb confinement Coherent Oscillation

  17. 50 CNT CNT Δ V G =3V 40 h+ h + 30 E F E F e/C Drain 20 Source Drain Source 7.3 K 10 V D =11 mV Tunnel Res. R T >> Quantum Res. R Q 0 V G ~ 0 - 1 0 0 1 0 2 0 CNT 50 CNT 45 h+ h + 40 E F 35 E F e/C Drain Drain Source 30 Sourc 25 e 20 Tunnel Res. R T ~ Quantum Res. R Q 15 V G ~ -10 -25 -20 -15 -10 -5 Gate Voltage (V) CNT CNT 0.18 7.3 K 0.16 + h 0.14 h + 0.12 EF EF 0.1 Drain Source 0.08 Drain Source 0.06 0.04 -25 -24 -23 -22 -21 -20 Tunnel Res. R T << Quantum Res. R Q V G ~ -20 Gate Voltage (V)

  18. Contents Drain Source 1) Carbon Nanotube Quantum Devices Carbon 1. Seamless Transition of Coulomb Blockade Nanoatube Transport to Coherent Transport 73nm 100 4E-6 3.9E-6 80 2) Application of FET Type Bio sensor 3.4E-6 60 Drain Voltage (mV) 40 2.9E-6 1. Top Gate FET type Bio Sensor dI D /dV D (S) 20 2.4E-6 0 1.9E-6 2. Direct modification type Bio-Sensor -20 1.4E-6 -40 9E-7 -60 50 3) Conclusions 4E-7 -80 150 45 1E-5 -1E-7 -100 100 40 -20 -19 -18 -17 -16 -15 Drain Voltage (mV) 5E-6 50 35 d 2 I D /dV D Gate Voltage (V) 0 0 30 -50 Water proof 25 -5E-6 resist 2 -100 20 -1E-5 -150 SiN x -25 -24 -23 -22 -21 -20 15 -25 -20 -15 -10 -5 Gate Voltage (V) SiO 2 IgE Gate Voltage (V) n + -Si Aptamer Aptamer Deby Deby IgE Length Length Drain Back gate ~ 3 nm 1 ~ 2 nm CNT Catal Source yst SiO 2 Si

  19. Antigen / Antibody Reaction : Immunoassay (免疫) 抗原(例えばウイルス) Antigen Antigen/Antibody Selective Reaction Antibody (抗体) Immune (免疫) Antigen is eaten.

  20. Electrical Detection of Antigen-Antibody Electrical Detection of Antigen-Antibody Reaction by Carbon Nanotube FET Reaction by Carbon Nanotube FET (抗原) Antigen 10 6 PSA : Pig Serum Albumin (抗体) Anti-Body a-PSA a-PSA 100 nm Top-gate SEM image of top-gate with a-PSA of CNT-FET with Water proof resist immobilized a-PSA. SiN x 窓 (100 μ m × 100 μ m) SiO 2 n + -Si Drain Top gate Back gate CNT Source Catalyst Drain Source Catalyst

  21. Electrical Detection of Antigen-Antibody Reaction Analyzer Ag/AgCl Gate Antigen PSA Antibody a-PSA SiN x Top Gate Antigen/Antibody Drain Source Reaction SiO 2 CNT n + -Si Reduction of Δ I D Back Gate - 1500 - PSA Δ I D Antigen Drain I (nA) - 1000 a-PSA Antibody 500 Top Gate - 0 CNT 0.0 0.2 0.4 0.6 0.8 1.0 Electron Current Drain V (V)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend