the bright side of coulomb blockade
play

The bright side of Coulomb blockade: Radiation from a Josephson - PowerPoint PPT Presentation

The bright side of Coulomb blockade: Radiation from a Josephson junction in the single Cooper pair regime Max Hofheinz, Fabien Portier, Carles Altimiras, Patrice Roche, Philippe Joyez, Patrice Bertet, Denis Vion, Daniel Estve Quantronics +


  1. The bright side of Coulomb blockade: Radiation from a Josephson junction in the single Cooper pair regime Max Hofheinz, Fabien Portier, Carles Altimiras, Patrice Roche, Philippe Joyez, Patrice Bertet, Denis Vion, Daniel Estève Quantronics + Nanoelectronics groups, SPEC, CEA Saclay, France Nanoelectronics beyond the roadmap, Lake Balaton, 2011, June 16 th

  2. Normal tunnel junction I NIN + + + + + + + + + + + + + + + + + + e V Tunnel V dI dV / Junction + Forbidden by Pauli principle Pauli principle  number of allowed transitions  V  I  V = = R I V R / tunnel resistance t t

  3. Coulomb blockade of a tunnel junction Large R NIN e V Tunnel V Junction 2 e ⇒ = E C 2 C

  4. Coulomb blockade of a tunnel junction Large R I NIN + e V Tunnel V + + + + Junction + + + + + + + + + + + + + + + e 2 C Forbidden by Pauli principle E C → ∞ both and R R t = T 0

  5. Coulomb blockade of a tunnel junction Large R NIN + e V Tunnel V dI dV / Junction + Forbidden by Pauli principle E e C 2 C → ∞ both and R R t = T 0 Pauli principle + Charging energy  conductance suppression for e < 2 V C

  6. Dynamical Coulomb blockade Delsing et al., PRL 63 , 1180 (1989) ν Z ( ) NIN e V Tunnel V Junction Geerligs et al., EuroPhys. Lett. 10 , 79 (1989) Celand et al., PRL 64 , 1565 (1990) ν Z ( ) P E ( ): probability to emit E photon into photon ν ⇒  2 Re[ ( )] Z h e / Energy balance 2 2 e = ν ≈ ν P Z E [ ]( h ) Re[ ( )] Z = + + photon eV E E E ν hole electron photon h h Ingold & Nazarov,arxiv:0508728 (1992)

  7. Coulomb blockade of a tunnel junction Large R NIN + e V Tunnel V dI dV / Junction + = T 0 1 e eV ∫ 0 = − I ( eV E P E dE ) ( ) eR 2 C t  2 R R , h e / t − 2 e V e /2 C = δ − ⇒ = Θ − P E ( ) ( E 2 ) I ( V e /2 C ) C R t

  8. A simpler system • Environment: single mode • No quasiparticles: use Josephson junction polarized below the gap voltage NIN SIS Tunnel Josephson Junction Junction

  9. Dynamical Coulomb Blockade of a Josephson Junction E Cooper V pair 2e eV ω =  2 eV Cooper pair = ω + − ϕ † H h ( a a 1/ 2) E cos J H. Pothier, ϕ = + +  † 2 eVt / r a ( a ) Ph. D. dissertation (1991) π Z L = = r Z 2 h / 4 e C + Fermi golden rule calculation

  10. Dynamical Coulomb Blockade of a Josephson Junction E Cooper V pair 2e V ω =  2 eV Cooper pair π 2 E ∑ 2 Γ = ϕ δ − ω 2 e i  J ( ) V n e 0 (2 eV n ) →  2 n − π 2 n E exp( r r ) ∑ = δ − ω  J (2 eV n )  2 n ! n ν Γ = ω = Γ  h 2 e ( V n /2 ) e n → →

  11. Dynamical Coulomb Blockade of a Josephson Junction E Cooper V pair 2e V ω =  2 eV Cooper pair − π 1 n 2 E exp( r r ) ∑ Γ = δ − ω 2 e  J ( ) V (2 eV n ) ⇒ → 0,1  2 n ! n = Ω ⇒ 0,01  Z 160 r 0.08 Γ n Z=160 Ω 1E-3 1E-4 0 1 2 3 4 n

  12. Josephson junction and resonator ν = ≈ ≈ Ω  2 25 GHz, Q 5, Z 120 h /4 e 1 1 ν 3 ν 5 Z 1 =100 Ω Z 2 =28 Ω ν 1 500 Z ( Ω ) 50 Ω on res: 640 Ω 16 Ω 50 Ω 0 Holst et al, PRL 73 , 3455 (1994)

  13. Josephson junction and resonator ν = 25 GHz 1 ν 3 ν 5 Z 1 =100 Ω Z 2 =28 Ω ν 1 500 Z ( Ω ) 50 Ω on res: 640 Ω 16 Ω 50 Ω 0 Holst et al, PRL 73 , 3455 (1994)

  14. Josephson junction and resonator ν 1 = 25 GHz ν 3 ν 5 Z 1 =100 Ω Z 2 =28 Ω ν 1 500 Z ( Ω ) 50 Ω on res: 640 Ω 16 Ω 50 Ω 0 Holst et al, PRL 73 , 3455 (1994) Two photon processes weak  2 Z h /4 e because 1

  15. Goal Dynamical Coulomb blockade: • Effect due to photons • DC side well established • But no one has seen photons Look on the bright side of…. Coulomb blockade

  16. Setup Φ = π Φ Φ 0 E ( ) E cos( / ) V P I J J 0 300 K 10M 4 K Φ 50 15 mK 1000 6 GHz 100

  17. Quarter-wave resonator Φ 50 Ω  25 Ω 135 Ω Designed Lorentzian 1,5 Fit ν 1 ν 3 ν 5 Re(Z) [k Ω ] 1,0 L = = Ω Z 160 0 C = Q 10 0,5 0,0 0 6 12 18 24 30 36 f(GHz)

  18. Calibration of the detection impedance ∆ ν  ⇒ quasi-particle shot noise eV , h , k T Apply B ν Re[ ( )] Z R ∫ = ⇒ = ν ⇒ ν t S 2 eI P 2 eV d Re[ ( )] Z II + ν 2 R Z ( ) t = Ω R 18 k t 2,0 Measured Designed 1,5 Re(Z env ) [k Ω ] 1,0 0,5 0,0 5,0 5,5 6,0 6,5 7,0 frequency [GHz]

  19. Cooper pair and photon rate match Cooper pairs Photons (5-7 GHz)

  20. Second order processes ν 1 ν 3 ν 5 ν 7 Cooper pairs ν 1 ν 3 ν 5 ν 7 ν 1 Photons in mode ν 0 (5 – 7 GHz) ν 1 ν 1 2 ν + ν ν + ν 1 3 ν + ν 1 5 1 7

  21. Spectral properties of emitted radiation = h ν + ν 2 eV ( ) 1 = ν 2 eV h

  22. Coulomb blockade with an arbitrary environment ∑ = ν + − ϕ − ˆ † H h ( a a 1/ 2) E cos 2 eV N i i i J t i V 2 eVt ∑ ϕ = + π + + 2 4 e Z a ( a ) h i i i  i Cooper pair rate: π   ∑ ∑ 2 Γ = ϕ δ − ν  2 i E n n , , e 0 2 eV n h   J 1 2 i i    2  n n , , i 1 2 π = Alternate calculation of P(E): 2 E P (2 e V ) J  2 Ingold & Nazarov, arxiv:0508728 (1992) π 2 4 e Re (2 Z eV h / ) ≈ 2 E J  h 2 eV Photon rate at ν = ν m : exclude mode m from sum π   ∑ ∑ 2 2 ϕ ϕ ϕ − Γ = δ − ν − ν 2 i   i ( ) E n e 0 n , n , e 0 2 eV n h n h   m m − + m , n J m m m 1 m 1 i i m m    2 m ≠   n , n , i m − + m 1 m 1 δν → 0: Photons emitted in m δ Γ ν π 2 4 e R e Z ( ) = × − ν 2 E P eV (2 h ) 2 δν ν J  h 2 probability of photon tunneling rate while emission at ν absorbing rest of energy

  23. Spectral properties of emitted radiation h ν ≈ Lorentzian with 2 4 e ∆ = π E 2 kT Z (0) h δ Γ ν π 2 4 e Re ( Z ) = × − ν 2 2 E P eV (2 h ) δν ν J  h 2

  24. Spectral properties of emitted radiation h ν 2 4 e Re (2 Z eV h / ) ≈ 2 h 2 eV δ Γ ν π 2 4 e Re ( Z ) = × − ν 2 2 E P eV (2 h ) δν ν J  h 2

  25. Emitting photon pairs Z a Z b V Emission of photon pairs Z E 2 eV + Bell-like state Z E 2 eV

  26. Setup Φ = π Φ Φ 0 E ( ) E cos( / ) V P I J J 0 300 K 10M 4 K Φ 50 15 mK 1000 6 GHz 100

  27. Emitting photon pairs quasi-particle shot noise a 2,5 2,0 b Re(Z env ) [k Ω ] 1,5 1,0 0,5 0,0 5,0 5,5 6,0 6,5 7,0 frequency [GHz]

  28. Emitting photon pairs Re(Z) [k Ω ] 0 1 2 Filter b Filter a

  29. Setup ⇒ < δ > < δ > < δ δ > 2 2 P , P , P P ADC a b a b P a P b V 300 K 100k 4 K Φ 50 15 mK Φ = π Φ Φ 0 E ( ) E cos( / ) J J 0 6 GHz 10

  30. Tuning the photon emission rate Γ ∝ 2 E J Φ = π Φ Φ 0 E ( ) E cos( / ) J J 0 | Γ a - Γ b | / (Γ a + Γ b ) < 5% 0,15 b [GHz] 0,10 a , Γ Γ 0,05 Γ a Γ b 0,00 0,0 0,5 1,0 Φ/Φ 0

  31. Power fluctuations cross correlation • Poissonian source of electrons  electronic shot noise due the charge granularity = = Γ 2 S 2 eI 2 e II • Poissonian source of photons = ν = ν Γ 2 S 2 h P 2( h ) PaP a a a a = ν = ν Γ 2 S 2 h P 2( h ) P b Pb b b b ν ν ( , ) • Poissonian source of photon pairs b a = ν ν Γ S 2 h h Pa Pb a b ⇔ = ν ν = Γ S S /( h h ) 2 a b Pa Pb a b

  32. Correlated photon pairs  E J 2photon regime (2eV DS ~h ν a +h ν b ) Shot Noise regime (eV DS >2 ∆ ) Theory: fully correlated Poissonian emission of photon pairs ( ν a , ν b ) 0,1 S ab [GHz] 2 Γ 0,0 0,00 0,05 ( Γ a Γ 0.5 [ GHz ] b ) Evidence of Poissonian emission of photon pairs

  33. Correlated photon pairs  E J 0,5 2photon regime (2eV DS ~h ν a +h ν b ) Shot Noise regime (eV DS >2 ∆ ) 0,4 Theory: fully correlated Poissonian emission of photon pairs ( ν a , ν b ) 0,3 S ab [GHz] 2 Γ 0,2 0,1 0,0 0,00 0,05 0,10 0,15 ( Γ a Γ 0.5 [ GHz ] b ) Deviations due to stimulated emission?

  34. Limits of Coulomb blockade theory • So far good agreement with P ( E ) theory • But need very low E J to fulfill assumptions – environment at equilibrium π ∑ ∑ 2 Γ = ϕ δ − ν 2  i E n n , , e 0 (2 eV n h ) J 0 1 i i  2  n n , , i 0 1 – single Cooper pair regime: E J P (2 eV ) << 1 • What happens if assumptions are violated?

  35. Out of equilibrium environment increase E J Lasing-like transition ? Transition ? Incoherent classical AC pair tunneling Josephson effect

  36. Conclusions • Photon side of Coulomb blockade: – Cooper pair vs. photon rate – multi photon processes – spectral properties M. Hofheinz et al. Phys. Rev. Lett. 106 , 217005 (2011) • Perspectives: – interesting for quantum optics with microwave photons, need for a deeper characterization of the emitted radiation – out of equilibrium environment (no theory yet)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend