partial regularity in time for the landau equation with
play

Partial Regularity in Time for the Landau Equation (with Coulomb - PowerPoint PPT Presentation

Partial Regularity in Time for the Landau Equation (with Coulomb Interaction) Franois Golse CMLS, cole polytechnique, Paris CIRM, October 21-25 2019 "The Analysis of Complex Quantum Systems: Large Coulomb Systems and Related


  1. Partial Regularity in Time for the Landau Equation (with Coulomb Interaction) François Golse CMLS, École polytechnique, Paris CIRM, October 21-25 2019 "The Analysis of Complex Quantum Systems: Large Coulomb Systems and Related Matters" Work in collaboration with M.P. Gualdani, C. Imbert and A. Vasseur arXiv:1906.02841 [math.AP] François Golse Partial Regularity for Landau

  2. Landau Equation Landau equation with unknown f ≡ f ( t , v ) ≥ 0: � v ∈ R 3 ∂ t f ( t , v )=div v R 3 a ( v − w )( ∇ v −∇ w )( f ( t , v ) f ( t , w )) dw , with the notation: � � ⊗ 2 8 π ∇ 2 | z | = 1 1 z a ( z ) := 8 π | z | Π( z ) , Π( z ) := I − | z | Nonconservative form ∂ t f ( t , v ) = ( a ij ⋆ v f ( t , v )) ∂ v i ∂ v j f ( t , v ) + f ( t , v ) 2 Open question global existence of classical solutions or finite-time � blow-up for the Cauchy problem with f t = 0 = f in ? � François Golse Partial Regularity for Landau

  3. Semilinear heat equation Finite time blow-up for u ≥ 0 soln of ∂ t u = ∆ x u + α u 2 Hint: Ricatti inequality ˙ L ( t ) ≥ − λ 0 L ( t ) + α L 2 ( t ) satisfied by � � − ∆ φ = λ 0 φ , B u ( t , x ) φ ( x ) dx φ > 0 on B L ( t ) := with � � B φ ( x ) dx φ ∂ B = 0 � “Isotropic Landau” global existence of radially symmetric nonin- creasing soln [Gressman-Krieger-Strain 2012, Gualdani-Guillen 2016] ∂ t u = (( − ∆) − 1 u )∆ u + α u 2 k solns with p > 3 t L p Conditional regularity L ∞ 2 and k > 5 are L ∞ t , v ([Silvestre 2017], radial solns [Gualdani-Guillen 2016]) François Golse Partial Regularity for Landau

  4. Villani’s H-Solutions [1RMA1998] H-solution 0 ≤ f ∈ C ([ 0 , T ); D ′ ( R 3 )) ∩ L 1 (( 0 , T ); L 1 − 1 ( R 3 )) s.t.     1 1 � �  f ( t , v ) dv =  f in ( t , v ) dv v v   R 3 | v | 2 R 3 | v | 2 � � R 3 f ( t , v ) ln f ( t , v ) dv ≤ R 3 f in ( v ) ln f in ( v ) dv for a.e. t ≥ 0, and � T � � R 3 f in ( v ) φ ( 0 , v ) dv + R 3 f ( t , v ) ∂ t φ ( t , v ) dv 0 � T � = R 6 (Φ( t , v ) − Φ( t , w )) · Π( v − w ) ( F ( ∇ v −∇ w ) F ) ( t , v , w ) dvdw 0 � f ( t , v ) f ( t , w ) with Φ( t , v ) := ∇ v φ ( t , v ) , F ( t , v , w ) := 8 π | v − w | � Notation � g � p ( 1 + | v | 2 ) k / 2 | g ( v ) | p dv with p ≥ 1 and k ∈ R k := L p François Golse Partial Regularity for Landau

  5. Suitable Solutions Definition E ) -suitable solution on [ 0 , T ) × R 3 is an H-solution s.t. A ( N , q , C ′ � t 2 � 1 f ( t , v ) >κ ∇ v f ( t , v ) 1 / q � � 2 H + ( f ( t 2 , · ) | κ ) + C ′ � � L q ( R 3 ) dt E � t 1 � t 2 � ≤ H + ( f ( t 1 , · ) | κ ) + 2 κ R 3 ( f ( t , v ) − κ ) + dvdt t 1 for all t 1 < t 2 ∈ [ 0 , T ) \ N and κ ≥ 1, where � g ( v ) � � H + ( g | κ ) := R 3 κ h + dv , h + ( z ) := z (ln z ) + − ( z − 1 ) + κ François Golse Partial Regularity for Landau

  6. Partial Regularity in Time Definition A regular time of f , suitable solution on I ⊂ ( 0 , + ∞ ) , is a time τ ∈ I s.t. f ∈ L ∞ (( τ − ǫ, τ ) × R 3 ) for some ǫ ∈ ( 0 , τ ) . The set of singular (i.e. nonregular) times of f on I is denoted S [ f , I ] . Main Thm Let f be a suitable solution to the Landau equation on [ 0 , T ) × R 3 for all T > 0 , with initial data f in satisfying � R 3 ( 1 + | v | k + | ln f in ( v ) | ) f in ( v ) dv < ∞ for all k > 3 Then Hausdorff dim S [ f , ( 0 , + ∞ )] ≤ 1 2 François Golse Partial Regularity for Landau

  7. Existence Theory Prop 1 For all 0 ≤ f in ∈ L 1 ( R 3 ) s.t. � R 3 ( 1 + | v | k + | ln f in ( v ) | ) f in ( v ) dv < ∞ for some k > 3 there exists an ( N , q , C ′ E ) -suitable solution f on [ 0 , T ] with initial data f in and 2 k C ′ E ≡ C ′ E [ T , q , f in ] > 0 , q := k + 3 François Golse Partial Regularity for Landau

  8. Desvillettes Theorem [JFA2015] �� � 1 / p R N ( 1 + | v | 2 ) k / 2 | g ( v ) | p Notation � g � L p k ( R N ) := Thm For each 0 ≤ f ∈ L 1 2 ( R 3 ) s.t. f ln f ∈ L 1 ( R 3 ) |∇ √ | Π( v − w )( ∇ v −∇ w ) √ � � f ( v ) | 2 dv f ( v ) f ( w ) | 2 ( 1 + | v | 2 ) 3 / 2 ≤ C D + C D dvdw | v − w | R 3 R 6 with �� � R 3 ( 1 , v , | v | 2 , | ln f ( v ) | ) f ( v ) dv C D ≡ C D > 0 Corollary Let 0 ≤ f in ∈ L 1 k ( R 3 )) with k > 2 s.t. f in | ln f in | ∈ L 1 ( R 3 ) . � ⇒ f ∈ L ∞ ( 0 , T ; L 1 k ( R 3 )) f H-solution s.t. f t = 0 = f in = � François Golse Partial Regularity for Landau

  9. (Formal) H Theorem Assuming that f ( t , v ) > 0 a.e., one has � d R 3 f ( t , v ) ln f ( t , v ) dv dt � � � �� 2 f ( t , v ) f ( t , w ) ∇ v f ( t , v ) f ( t , v ) − ∇ w f ( t , w ) � � = − � Π( v − w ) dvdw 16 π | v − w | � f ( t , w ) R 6 François Golse Partial Regularity for Landau

  10. (Formal) Truncated H Theorem One has d dt H + ( f ( t , · ) | κ ) � � � 1 f ( t , v ) >κ ∇ v f ( t , v ) �� 2 1 f ( t , w ) >κ ∇ w f ( t , w ) f ( t , v ) f ( t , w ) � � + � Π( v − w ) − dvdw 16 π | v − w | � f ( t , v ) f ( t , w ) � �� � D 1 � f ( t , v ) f ( t , w ) a ( v − w ): ∇ v (ln f ( t , v ) ) + ⊗∇ w (ln f ( t , w ) = − ) − dvdw κ κ � = − a ( v − w ): ∇ v f ( t , v ) 1 f ( t , v ) ≥ κ ⊗ ∇ w f ( t , w ) 1 f ( t , w ) <κ dvdw � − div v (div w a ( v − w )) ( f ( t , v ) − κ ) + ( κ − ( f ( t , w ) − κ ) − ) dvdw = � �� � ≥ 0 ( in fact = δ ( v − w ) ) � ≤ κ ( f ( t , v ) − κ ) + dv � �� � depleted NL François Golse Partial Regularity for Landau

  11. Sketch of the Proof of Prop 1 • Replace a with its truncated variant 8 π ( 1 1 a n ( z ) = | z | ∧ n )Π( z ) , satisfying div(div a n ) ≥ 0 • Use the Desvillettes theorem to bound |∇ v √ � � f ( t , v ) | 2 1 1 f ( t , v ) >κ dv ≤ D 1 + R 3 ( f ( t , w ) − κ ) + dw C ′′ ( 1 + | v | ) 3 D R 3 • Using the Desvillettes corollary with p ′ = 2 / q (recall q ∈ ( 1 , 2 ) ) � � 1 f ( t , v ) >κ ∇ v f ( t , v ) 1 / q � q � � � L q ( R 3 ) |∇ v √ �� � 1 / p ′ f ( t , v ) | 2 1 f ( t , v ) ≥ κ ≤ ( 2 q ) q � f ( t , · ) � L p dv 3 p / 2 p ′ ( R 3 ) ( 1 + | v | 2 ) 3 / 2 R 3 François Golse Partial Regularity for Landau

  12. The 1st De Giorgi Type Lemma Prop 2 Let f be a ( N , q , C ′ E ) –suitable solution to the Landau equa- E > 0 and q ∈ ( 6 tion for t ∈ [ 0 , 1 ] with C ′ 5 , 2 ) Then there exists η 0 ≡ η 0 [ q , C ′ E ] > 0 s.t. � 1 H + ( f ( t , · ) | 1 a.e. on [ 1 2 , 1 ] × R 3 2 ) dt < η 0 = ⇒ f ( t , v ) ≤ 2 1 / 8 François Golse Partial Regularity for Landau

  13. Proof of Prop 2 Set � κ k := ( 1 + ( 2 1 / q − 1 )( 1 − 2 − k )) q t k := 1 4 · 2 − k , 2 − 1 k ( t , v ) := µ (( f ( t , v ) 1 / q − κ 1 / q f + with µ ( r ) := min( r , r 2 ) ) + ) k and observe that c h µ ( r ) ≤ h + ( r ) ≤ C ι ( r − 1 ) ι + Consider the quantity � c h R 3 f + k ( t , v ) q dv A k := ess sup 2 t k ≤ t ≤ 1 � 1 � 2 / q �� + 1 4 C ′ R 3 |∇ v f + k ( t , v ) | q dv dt E t k François Golse Partial Regularity for Landau

  14. De Giorgi Nonlinearization [Mem. Accad. Sci. Torino 1957] • Observe first that k > µ (( 2 1 / q − 1 ) · 2 − k − 1 ) f + ⇒ f + k + 1 > 0 = � 1 � A k + 1 ≤ C q ,ι 4 ( k + 3 ) q ( 1 + ι ) k ( θ, v ) q ( 1 + ι ) dvd θ R 3 f + so that t k • Using the Hölder inequality + Sobolev embedding with ι = 2 3 5 q A k + 1 ≤ M Λ k A β β := 8 3 − 2 k , q > 1 and Λ := 2 · 4 3 with M ≡ M [ q , C ′ E ] > 0, so that 1 1 − ( β − 1 ) 2 = A 0 < M − β − 1 Λ ⇒ A k → 0 as k → + ∞ • Control A 0 by truncated entropy + conclude by Fatou’s lemma François Golse Partial Regularity for Landau

  15. The Improved De Giorgi Type Lemma Prop 3 Let f be a ( N , q , C ′ E ) -suitable solution to the Landau equa- tion on [ 0 , 1 ] with q ∈ ( 4 3 , 2 ) . There exists η 1 ≡ η 1 [ q , C ′ E ] > 0 and δ 1 ∈ ( 0 , 1 ) such that � 1 � � 2 1 ǫ → 0 + ǫ γ − 3 � � lim � 1 f ( T , V ) >ǫ − γ ∇ V f ( T , V ) L q ( R 3 ) dT < η 1 q � 1 − ǫ γ ⇒ f ∈ L ∞ (( 1 − δ 1 , 1 ) × R 3 ) = with γ := 5 q − 6 2 q − 2 . François Golse Partial Regularity for Landau

  16. Proof of Prop 3: (a) Scaling • 2-parameter group of invariance scaling transfo. for the Landau eq.: f λ,ǫ ( t , v ) := λ f ( λ t , ǫ v ) • let f be a ( N , q , C ′ E ) -suitable solution on [ 0 , 1 ] , with λ = ǫ γ H + ( f λ,ǫ ( t , · ) | ǫ γ κ ) = ǫ γ − 3 H + ( f ( ǫ γ t , · ) | ǫ γ κ ) � ǫ γ t 2 � t 2 � � ( f λ,ǫ ( t , v ) − ǫ γ κ ) + dvdt = 1 f ( T , V ) − κ ) + dVdT ǫ 3 ǫ γ t 1 t 1 while γ := 5 q − 6 2 q − 2 implies that � t 2 �� � 2 / q 1 λ,ǫ ( t , v ) | q dv q | 1 f λ,ǫ ≥ ǫ γ κ ∇ v f dt t 1 � ǫ γ t 2 �� � 2 / q 1 = ǫ γ − 3 q ( T , V ) | q dV | 1 f ≥ κ ∇ v f dT ǫ γ t 1 François Golse Partial Regularity for Landau

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend