finite volume methods for dissipative problems
play

Finite volume methods for dissipative problems Claire - PowerPoint PPT Presentation

Finite volume methods for dissipative problems Claire Chainais-Hillairet CEMRACS summer school Marseille, July 2019, 15-20 Lecture 3 : Finite volume schemes and long time behavior Outline Discrete functional inequalities 1 Results for the


  1. Finite volume methods for dissipative problems Claire Chainais-Hillairet CEMRACS summer school Marseille, July 2019, 15-20

  2. Lecture 3 : Finite volume schemes and long time behavior

  3. Outline Discrete functional inequalities 1 Results for the porous media equations 2 Results for the Fokker-Planck equations 3

  4. Outline Discrete functional inequalities 1 Results for the porous media equations 2 Presentation of the schemes Long time behavior Results for the Fokker-Planck equations 3 Presentation of the B-schemes and first results Long time behavior About nonlinear schemes

  5. Some references ❑ Herbin, 1995 ❑ Coudi` ere, Vila, Villedieu, 1999 ❑ Eymard, Gallou¨ et, Herbin, 1999, 2000, 2010 ❑ Gallou¨ et, Herbin, Vignal, 2000 ❑ Coudi` ere, Gallou¨ et, Herbin, 2001 ❑ Droniou, Gallou¨ et, Herbin, 2003 ❑ Andreianov, Gutnic, Wittbold, 2004 ❑ Filbet, 2006 ❑ Glitzky, Griepentrog, 2010 ❑ Andreianov, Bendahmane, Ruiz Baier, 2011 ❑ Bessemoulin-Chatard, C.-H., Filbet, 2015

  6. Space of approximate solutions and norms � � � ⊂ L 1 (Ω) , X ( T ) = u T = u K 1 K K ∈T ∈ H 1 (Ω) but X ( T ) / L q -norms For 1 ≤ q < + ∞ , � 1 /q �� | u T ( x ) | q dx � u T � 0 ,q = Ω � 1 /q � � m( K ) | u K | q = . K ∈T � u T � 0 , ∞ = max K ∈T | u K | .

  7. About the mesh Regularity of the mesh Each control volume K is star-shaped with respect to x K . There exists ξ > 0 such that ∀ K ∈ T , ∀ σ ∈ E K , d( x K , σ ) ≥ ξ d σ . L σ • x L d σ x K • K Remark Admissibility assumption not necessary.

  8. Discrete W 1 ,p -norms General framework Discrete W 1 ,p -semi-norm : | u L − u K | p | u T | p � 1 ,p, T = m( σ )d σ . d p σ σ = K | L Discrete W 1 ,p -norm : � u T � 1 ,p, T = � u T � 0 ,p + | u T | 1 ,p, T . With homogeneous Dirichlet boundary conditions on Γ 0 ⊂ Γ ( D σ u ) p | u T | p � 1 ,p, Γ 0 , T = m( σ )d σ d p σ σ ∈E  | u K − u L | si σ = K | L,  si σ ⊂ Γ 0 , | u K | where D σ u = si σ ⊂ Γ \ Γ 0 . 0 

  9. Relations between the norms For 1 ≤ s ≤ p , for all u T ∈ X ( T ) , p − s ps � u T � 0 ,p , � u T � 0 ,s ≤ m(Ω) and � p − s � d m(Ω) ps | u T | 1 ,s, T ≤ | u T | 1 ,p, T ξ Proof older inequality with p ′ = p p s and q ′ = H¨ p − s Due to the regularity of the mesh : m( σ )d σ ≤ 1 m( σ )d( x K , σ ) = d m(Ω) � � � . ξ ξ K ∈T σ ∈E K σ = K | L

  10. The space L 1 ∩ BV (Ω) Total variation Let Ω be an open set of R N and u ∈ L 1 (Ω) . We define : �� � u ( x )div ϕ ( x ) dx ; ϕ ∈ C 1 c (Ω , R N ) , � ϕ � ∞ ≤ 1 TV Ω ( u ) = sup Ω L 1 ∩ BV (Ω) L 1 ∩ BV (Ω) = u ∈ L 1 (Ω); TV Ω ( u ) < + ∞ � � . L 1 ∩ BV (Ω) is endowed with the norm : � u � BV (Ω) = � u � L 1 (Ω) + TV Ω ( u ) .

  11. Relation between X ( T ) and L 1 ∩ BV (Ω) Total variation of u T ∈ X ( T ) � TV Ω ( u T ) = m( σ ) | u K − u L | = | u T | 1 , 1 , T . σ = K | L Inclusion For all u T ∈ X ( T ) , � u T � 1 , 1 , T < + ∞ and X ( T ) ⊂ L 1 ∩ BV (Ω) .

  12. Starting point for the discrete functional inequalities ❑ Ambrosio, Fusco, Pallara, 2000 ❑ Ziemer, 1989 Theorem Let Ω be a bounded Lipschitz domain of R N , N ≥ 2 . There exists C > 0 , depending only on Ω such that � N − 1 �� N N ∀ u ∈ L 1 ∩ BV (Ω) . | u | ≤ C � u � BV (Ω) N − 1 Ω L 1 ∩ BV (Ω) ⊂ L N/ ( N − 1) (Ω) with continuous embedding.

  13. Discrete Poincar´ e-Sobolev inequality Theorem Let Ω be a polyedral bounded domain of R N , N ≥ 2 . Let ( T , E , P ) be a regular mesh of Ω , with regularity ξ . pN If 1 ≤ p < N , let 1 ≤ q ≤ p ∗ = N − p . If p ≥ N , let 1 ≤ q < + ∞ . There exists C > 0 , depending only on p , q , N and Ω such that C � u T � 0 ,q ≤ ξ ( p − 1) /p � u T � 1 ,p, T ∀ u T ∈ X ( T ) .

  14. A crucial lemma Lemma Let Ω be an open bounded polyhedral domain of R N , N ≥ 2 . Let ( T , E , P ) a regular mesh of Ω , with regularity parameter ξ . For all s > 1 , p > 1 , we have : C ξ ( p − 1) /p � u T � ( s − 1) � u T � s 0 ,sN/ ( N − 1) ≤ 0 , ( s − 1) p/ ( p − 1) � u T � 1 ,p, T ∀ u T ∈ X ( T ) . Proof ➟ Application of the Theorem on L 1 ∩ BV to v T = | u T | s . � � ξ ( p − 1) /p | u T | 1 ,p, T � u T � ( s − 1) 1 0 , ( s − 1) p/ ( p − 1) + � u T � s ➟ lhs ≤ C 0 ,s ➟ Interpolation : � u T � 0 ,s ≤ � u T � 1 /s 0 ,p � u T � ( s − 1) /s 0 , ( s − 1) p/ ( p − 1) .

  15. The key points of the proof of (PSdis) p = 1 Direct consequence of the embedding Theorem : � u T � 0 ,N/ ( N − 1) ≤ C � u T � 1 , 1 , T . N p ∗ = ⇒ result sill holds ∀ 1 ≤ q ≤ p ∗ . N − 1 = 1 < p < N Let s = ( N − 1) p N − p . Then, s > 1 , ( s − 1) p sN sN Np = N − 1 and N − 1 = N − p . p − 1 Application of the lemma : C � u T � 0 ,pN/ ( N − p ) ≤ ξ ( p − 1) /p � u T � 1 ,p, T . Result ∀ 1 ≤ q ≤ p ∗ = pN N − p .

  16. The key points of the proof of (PSdis) p = N Application of the lemma with p = N : C ξ ( N − 1) /N � u T � ( s − 1) � u T � s 0 ,sN/ ( N − 1) ≤ 0 , ( s − 1) N/ ( N − 1) � u T � 1 ,N, T . But L sN/ ( N − 1) (Ω) ⊂ L ( s − 1) N/ ( N − 1) (Ω) , so that C � u T � 0 , ( s − 1) N/ ( N − 1) ≤ ξ ( N − 1) /N � u T � 1 ,N, T s = 1 + ( N − 1) q/N . p > N C We have : � u T � 1 ,N, T ≤ ξ ( p − N ) / ( pN ) � u T � 1 ,p, T . We apply the result for p = N .

  17. Discrete Poincar´ e-Sobolev inequality, Dirichlet case Theorem Let Ω be a polyedral bounded domain of R N , N ≥ 2 . Let Γ 0 ⊂ Γ , m(Γ 0 ) > 0 . Let ( T , E , P ) be a regular mesh of Ω , with regularity ξ . pN If 1 ≤ p < N , let 1 ≤ q ≤ p ∗ = N − p . If p ≥ N , let 1 ≤ q < + ∞ . There exists C > 0 , depending only on p , q , N , Γ 0 and Ω such that C � u T � 0 ,q ≤ ξ ( p − 1) /p | u T | 1 ,p, Γ 0 , T ∀ u T ∈ X ( T ) .

  18. Discrete Poincar´ e-Wirtinger inequality Theorem Let Ω be a polyedral bounded domain of R N , N ≥ 2 . Let ( T , E , P ) be a regular mesh of Ω , with regularity ξ . For all 1 ≤ p < + ∞ , there exists C > 0 , depending only on p , N and Ω such that C � u T − ¯ u T � 0 ,p ≤ ξ ( p − 1) /p | u T | 1 ,p, T ∀ u T ∈ X ( T ) , where 1 � ¯ u T = u T . m(Ω) Ω

  19. Outline Discrete functional inequalities 1 Results for the porous media equations 2 Presentation of the schemes Long time behavior Results for the Fokker-Planck equations 3 Presentation of the B-schemes and first results Long time behavior About nonlinear schemes

  20. FV scheme for the evolutive equation ∂ t f = ∆ f β , in Ω × R +     f = f D on Γ D × R + , ∇ f · n = 0 on Γ N × R +   f ( · , 0) = f 0 > 0 .  The scheme m( K ) f n +1 − f n  τ σ D K,σ ( f n +1 ) β = 0 K K � − ∀ K ∈ T   ∆ t   σ ∈E K 1 1 � �  f D f D , f 0  σ = K = f 0   m( σ ) m( K ) σ K u L − u K if σ = K | L    u D if σ ⊂ Γ D σ − u K with the notation : D K,σ u =  if σ ⊂ Γ N  0

  21. Hypotheses and first result Hypotheses Admissibility and regularity of the mesh E D ext � = ∅ f 0 K ≥ 0 ∀ K ∈ T ∃ m D and M D such that 0 < m D ≤ f D σ ≤ M D ∀ σ ∈ E D ext . Proposition The scheme has a unique nonnegative solution ( f n K ) K ∈T ,n ≥ 0 . ❑ Eymard, Gallou¨ et, Hilhorst, Na¨ ıt Slimane, 1998

  22. Scheme for the steady state � ∆ f β = 0 , in Ω × R + f = f D on Γ D × R + , ∇ f · n = 0 on Γ N × R + The scheme τ σ D K,σ ( f ∞ ) β = 0 , � ∀ K ∈ T . σ ∈E K Proposition The scheme has a unique nonnegative solution ( f ∞ K ) K ∈T , which satisfies : m D ≤ f ∞ K ≤ M D ∀ K ∈ T .

  23. Outline Discrete functional inequalities 1 Results for the porous media equations 2 Presentation of the schemes Long time behavior Results for the Fokker-Planck equations 3 Presentation of the B-schemes and first results Long time behavior About nonlinear schemes

  24. At the continuous level f β +1 − ( f ∞ ) β +1 � − ( f ∞ ) β ( f − f ∞ ) E ( t ) = β + 1 Ω � f β − ( f ∞ ) β � � | 2 D ( t ) = |∇ Ω Relation between entropy and dissipation : D ( t ) ≥ ( m D ) β − 1 E ( t ) . C P Exponential decay of the entropy : E ( t ) ≤ E (0) e − λt , with λ = ( m D ) β − 1 . C P

  25. At the discrete level Discrete relative entropy K ) β +1 − ( f ∞ � ( f n K ) β +1 � E n = � − ( f ∞ K ) β ( f n K − f ∞ m( K ) K ) . β + 1 K ∈T Discrete dissipation � 2 D n = � D K,σ (( f n +1 ) β − ( f ∞ ) β ) � τ σ σ ∈E Discrete entropy-entropy dissipation property E n +1 − E n + D n +1 ≤ 0 ∀ n ≥ 0 . ∆ t

  26. Exponential decay towards the steady-state Discrete Poincar´ e inequality K ) β � 2 ≤ C P � ) β − ( f ∞ � ( f n +1 ξ D n +1 . m( K ) K K ∈T Elementary inequality � x β +1 − y β +1 � ( x β − y β ) 2 ≥ y β − 1 − y β ( x − y ) ∀ x, y ≥ 0 . β + 1 Consequences C P E n +1 ≤ ξ ( m D ) β − 1 D n +1 � − 1 � 1 + ∆ t ξ ( m D ) β − 1 E n +1 ≤ E n C P

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend