finite volume methods for dissipative problems
play

Finite volume methods for dissipative problems Claire - PowerPoint PPT Presentation

Finite volume methods for dissipative problems Claire Chainais-Hillairet CEMRACS summer school Marseille, July 2019, 15-20 Lecture 2 : Dissipative problems and long time behavior Overview Evolutive equation t Steady-state or


  1. Finite volume methods for dissipative problems Claire Chainais-Hillairet CEMRACS summer school Marseille, July 2019, 15-20

  2. Lecture 2 : Dissipative problems and long time behavior

  3. Overview Evolutive equation t → ∞ Steady-state or system of equations F ∞ F ∆ x, ∆ t → 0 ∆ x → 0 Scheme for the Scheme evolutive problem for the equilibrium F ∞ F ∆ x, ∆ t ∆ x

  4. Overview Evolutive equation t → ∞ Steady-state or system of equations F ∞ F ∆ x, ∆ t → 0 ∆ x → 0 n → ∞ Scheme for the Scheme evolutive problem for the equilibrium F ∞ F ∆ x, ∆ t ∆ x

  5. Framework : dissipative problems � � ∂ t u + Au = 0 , t ≥ 0 , u ∞ , ( F ∞ ) ( F ) u (0) = u 0 . Au ∞ = 0 . Main features Existence of a Lyapunov convex function E satisfying d dtE ( u ) = −� Au, E ′ ( u ) � ≤ 0 . E is general given by the physics : it is a physical energy or entropy, which is dissipated along time. D ( u ) = � Au, E ′ ( u ) � is the dissipation of energy/entropy. The steady-state is a minimizer for E .

  6. Dissipativity and long time behavior � � ∂ t u + Au = 0 , t ≥ 0 , u ∞ , ( F ∞ ) ( F ) u (0) = u 0 . Au ∞ = 0 . Main features d dtE ( u ) = − D ( u ) D ( u ) ≥ λE ( u ) = ⇒ exponential decay : E ( u ) ≤ E ( u 0 ) e − λt . D ( u ) ≥ KE ( u ) 1+ γ = ⇒ polynomial decay ∼ t − 1 /γ

  7. Overview Evolutive equation t → ∞ Steady-state or system of equations F ∞ F upwind centered SG ∆ x, ∆ t → 0 ∆ x → 0 + exponential convergence ? n → ∞ Scheme for the Scheme evolutive problem for the equilibrium F ∞ F ∆ x, ∆ t ∆ x

  8. Outline of the lecture Some example of dissipative problems 1 Long time behavior of the Fokker-Planck equation 2 Long time behavior of the porous media equation 3

  9. Shallow water equations with viscous terms Incoming fluxes h : water height Lake b : ground topography Sea level h b u : velocity Sediments Shallow water equations with friction � ∂ t h + div( h u ) = 0 ∂ t h u + div( h u ⊗ u ) + gh ∇ ( h + b ) = − C | u | u E ( h, u ) = 1 � � h | u | 2 + g ( h + b ) 2 � Energy/dissipation 2 T 2 � T 2 C | u | 3 D ( h, u ) =

  10. Study over large time scales ❑ Peton, ’18 � ∂ t h + div( h u ) = 0 gh ∇ ( h + b ) = − C | u | u ⇒ u = − ( g C ) 1 / 2 h 1 / 2 |∇ ( h + b ) | − 1 / 2 ∇ ( h + b ) = Conservation law for the water height ∂ t h + div( − Kh 3 / 2 |∇ ( h + b ) | − 1 / 2 ∇ ( h + b )) = 0 degenerate 3/2-laplacian equation, with drift.

  11. Dissipative behavior � ∂ t h + div( − Kh 3 / 2 |∇ ( h + b ) | − 1 / 2 ∇ ( h + b )) = 0 + no-flux boundary condition E ( h ) = 1 � ( h + b ) 2 Energy/dissipation 2 Ω d � dtE ( h ) = ∂ t h ( h + b ) Ω � − Kh 3 / 2 |∇ ( h + b ) | − 1 / 2 ∇ ( h + b ) � � = − div ( h + b ) Ω � Kh 3 / 2 |∇ ( h + b ) | 3 / 2 = − Ω Steady states h = 0 or h + b = constant.

  12. Saltwater intrusion model Management of fresh water resources in costal regions Quantities of interest height of the freshwater height of the interface with the saltwater

  13. Saltwater intrusion model ❑ Escher, Laurenc ¸ot, Matioc, ’12 , ❑ Laurenc ¸ot, Matioc, ’14, ’17 ❑ Jazar, Monneau, ’14 Notations Assumptions z = b + g + f Thin layers, sharp interfaces dry sol z = b + g Large time scales freshwater z = b Incompressible immiscible phases saltwater bedrock Mainly horizontal displacements ρ : ratio of the densities, ρ = ρ f < 1 , ρ s ν : ratio of the kinematic viscosities, ν = ν s ∈ (0 , + ∞ ) ν f

  14. Saltwater intrusion model  ∂ t f + div( − νf ∇ ( f + g + b )) = 0 ,   ∂ t g + div( − g ∇ ( ρf + g + b )) = 0 ,  + no-flux boundary conditions  Dissipative behavior ρ 2( f + g ) 2 + 1 − ρ � g 2 + b ( ρf + g ) . E ( f, g ) = 2 Ω d � dtE ( f, g ) = ∂ t f ( ρ ( f + g + b )) + ∂ t g ( ρf + g + b ) Ω � � 2 + g � 2 � � � � = − � ∇ ( ρ ( f + g + b )) � ∇ ( ρf + g + b ) ρνf Ω � � 2 + g � 2 � � � � = − ρνf � ∇ Φ f � ∇ Φ g Ω

  15. About porous media equation : Ω = R d , b = 0 , f = 0 ∂ t g + div( − g ∇ g ) = 0 Self-similar solutions Passage to self-similar variables : x d (1 + t ) 1 / ( d +2) , g ( t, x ) = e − τ d +2 u ( τ, ξ ) τ = log(1 + t ) , ξ = Nonlinear Fokker-Planck equation on u : | x | 2 ∂ t u + div( − u ∇ ( u + 2( d + 2))) = 0 Self-similar solution in g ⇐ ⇒ steady-state in u Exponential decay in u and polynomial decay in g ❑ Barenblatt, ’1952 ❑ Carrillo, Toscani, ’00

  16. Salt water intrusion model : self-similar solutions Initial system with b = 0 , Ω = R 2 � ∂ t f + div( − νf ∇ ( f + g )) = 0 , ∂ t g + div( − g ∇ ( ρf + g )) = 0 , Self-similar variables and new system � � 1 x (1 + t ) 1 / 2 ( ˜ ( f, g )( t, x ) = f, ˜ g ) log(1 + t ) , (1 + t ) 1 / 4 ∂ t f + div( − νf ∇ ( f + g + b  ν )) = 0 ,      ∂ t g + div( − g ∇ ( ρf + g + b )) = 0 ,  b ( x ) = | x | 2     8

  17. Salt water intrusion model : self-similar solutions ρ 2( f + g ) 2 + 1 − ρ g 2 + b ( ρ � E ( f, g ) = ν f + g ) , 2 Ω � � 2 + g � 2 � � � � D ( f, g ) = ρνf � ∇ Φ f � ∇ Φ g Ω with Φ f = f + g + b ν , Φ g = ρf + g + b Characterization of the steady-states (self-similar solutions) Stationary solutions have vanishing fluxes : F ∇ Φ F = 0 , G ∇ Φ G = 0 . The minimizer of the energy is a stationary solution. There exists a unique minimizer of E which is radially symmetric. ❑ Ait Hammou Oulhaj, Canc` es, C.-H., Laurenc ¸ot, ’19 ❑ Laurenc ¸ot, Matioc, ’14

  18. Self-similar profiles G F F F, G F, G ν ρ F 1 G 0 ν ⋆ ν ⋆ ν ⋆ 1 3 2 G F, G F, G ρ 2 M f ρ M f M g + 1 3 = 1 + (1 − ρ ) M f M g ν ⋆ ν ⋆ ν ⋆ 1 = , 2 = , . 1 + ρ ( M f M f M g M g − 1) M g + 1

  19. Numerical experiments Topological change of E G near the critical value ν ⋆ 1 = 0 . 81 ν = ν ⋆ ν = 0 . 80 1 = 0 . 81 ν = 0 . 82

  20. Numerical experiments Topological change of E F near the critical value ν ⋆ 3 = 1 . 1 ν = ν ⋆ ν = 1 . 09 3 = 1 . 10 ν = 1 . 11

  21. Convergence towards the steady-state ( f ( t ) , g ( t )) → ( F, G ) in L 2 ( R 2 ; R 2 ) as t → ∞ 10 -4 10 -4 10 -5 10 -5 10 -6 Cexp( -0.0310t) Cexp(-0.0992t) 10 -6 10 -7 0 5 10 15 20 0 5 10 15 20 ν = 0 . 4 ν = 0 . 9 10 -4 10 -4 10 -5 10 -5 Cexp(-0.0802t) 10 -6 10 -6 Cexp(-0.0344t) 10 -7 10 -7 0 5 10 15 20 0 5 10 15 20 ν = 0 . 95 ν = 2

  22. Exponential convergence towards the steady-state ? Rate of convergence with respect to ν 0.42 0.39 0.36 0.33 0.3 0.27 0.24 0.21 p 0.18 0.15 0.12 0.09 0.06 0.03 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ν

  23. Outline of the lecture Some example of dissipative problems 1 Long time behavior of the Fokker-Planck equation 2 Long time behavior of the porous media equation 3

  24. Focus on Fokker-Planck equations  ∂ t f + ∇ · J = 0 , J = −∇ f + U f, in Ω × R +    J · n = 0 on Γ N × R +    f = f D on Γ D × R +      f ( · , 0) = f 0 > 0 .  Some references ❑ Carrillo, Toscani, ’98 ❑ Arnold, Markowich, Toscani, Unterreiter, ’01 ❑ Carrillo et al., ’01 ❑ Bodineau, Lebowitz, Mouhot, Villani, ’14 ❑ Gajewski, Gr¨ oger, ’86, ’89 ❑ J¨ ungel, ’95

  25. Thermal equilibrium, when U = −∇ Ψ  ∂ t f + ∇ · J = 0 , J = −∇ f −∇ Ψ f, in Ω × R +   J · n = 0 on Γ N × R +    f = f D on Γ D × R +     f ( · , 0) = f 0 > 0 .  f = λe − Ψ = ⇒ J = 0 f ∞ = λe − Ψ Existence of a thermal equilibrium � � if Γ D = ∅ , with λ = e − Ψ , f 0 / Ω Ω if log f D + Ψ D = α , with λ = e α . J = − f ∇ (log f + Ψ) = − f ∇ log f = ⇒ f ∞

  26. Entropy-dissipation property J = − f ∇ log f ∂ t f + ∇ · J = 0 , f ∞ Relative entropy Φ 1 ( x ) = x log x − x + 1 � f ∞ Φ 1 ( f H 1 ( t ) = f ∞ ) Ω Dissipation of the entropy d dtH 1 ( t ) = − D 1 ( t ) , 2 � ∇ log f � � � � � ≥ 0 with D 1 ( t ) = f � � f ∞ � Ω

  27. Exponential decay towards thermal equilibrium No-flux boundary conditions � � � f ∞ conservation of mass : f = f 0 = Ω Ω Ω � f log( f/f ∞ ) H 1 ( t ) = Ω 2 � � f |∇ log( f/f ∞ ) | 2 = 4 f ∞ � � � � ∇ D 1 ( t ) = f/f ∞ � � � Ω Ω thanks to Logarithmic Sobolev inequality : 0 ≤ H 1 ( t ) ≤ H 1 (0) e − κt and with Csiszar-Kullback inequality : � f ( t ) − f ∞ � 2 1 ≤ 2 H 1 (0) e − κt

  28. Exponential decay towards thermal equilibrium Dirichlet boundary conditions Upper and lower bounds on f and f ∞ � Φ 1 ( f ) − Φ 1 ( f ∞ ) − ( f − f ∞ )Φ ′ 1 ( f ∞ ) H 1 ( t ) = Ω c � f ( t ) − f ∞ � 2 2 ≤ H 1 ( t ) ≤ C � f ( t ) − f ∞ � 2 2 � f |∇ (log f − log f ∞ ) | 2 D 1 ( t ) = Ω with Poincar´ e inequality : D 1 ( t ) ≥ C� f ( t ) − f ∞ � 2 2 Conclusion : c � f ( t ) − f ∞ � 2 2 ≤ H 1 ( t ) ≤ H 1 (0) e − κt

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend