optimal control of a dissipative 2 level quantum system
play

Optimal control of a dissipative 2-level quantum system Nataliya - PowerPoint PPT Presentation

Optimal control of a dissipative 2-level quantum system Nataliya Shcherbakova ENSEEIHT, Toulouse, France October 25, 2010 Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 1 / 41 Main


  1. Optimal control of a dissipative 2-level quantum system Nataliya Shcherbakova ENSEEIHT, Toulouse, France October 25, 2010 Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 1 / 41

  2. Main collaborators Bernard Bonnard, Institut de Mathématiques de Bourgogne, UMR CNRS 5584; Dominique Sugny, Institut Carnot de Bourgogne, UMR CNRS 5209; Olivier Cots, ENSEEIHT and Institut de Mathématiques de Bourgogne. Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 2 / 41

  3. Main publications B. Bonnard, O.Cots, N. Shcherbakova, D. Sugny, The energy minimization problem for two-level dissipative quantum systems , J. Math.Phys. 51, 2010, DOI: 10.1063/1.3479390 B. Bonnard, N. Shcherbakova, D. Sugny, The smooth continuation method in optimal control with an application to quantum systems , 2009, ESAIM-COCV, DOI: 10.1051/cocv/2010004 B. Bonnard, D. Sugny, Time-minimal control of dissipative two-level quantum systems: the integrable case , SIAM J. on Control and Optimization, vol.48 (2009), pp. 1289-1308 B. Bonnard, M. Chyba, D. Sugny, Time-minimal control of dissipative two-level quantum systems: the generic case , IEEE Transactions on Automatic control, vol. 54, N.11 (2009), pp.2598 - 2610 Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 3 / 41

  4. Problem 1: Control of molecular alignment by laser fields in dissipative media i � ∂ρ ∂ t = [ H 0 + H 1 , ρ ] + i L ( ρ ) , (1) ρ - the density matrix (i.e. positive semi-definite Hermitian operator) s.t. tr ( ρ 2 ) ≤ 1 tr ( ρ ) = 1 , H 0 - the field-free Hamiltonian of the system H 1 - the Hamiltonian of the interaction with the control field L - the dissipation operator Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 4 / 41

  5. Problem 1: Control of molecular alignment by laser fields in dissipative media i � ∂ρ ∂ t = [ H 0 + H 1 , ρ ] + i L ( ρ ) , (1) ρ - the density matrix (i.e. positive semi-definite Hermitian operator) s.t. tr ( ρ 2 ) ≤ 1 tr ( ρ ) = 1 , H 0 - the field-free Hamiltonian of the system H 1 - the Hamiltonian of the interaction with the control field L - the dissipation operator Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 4 / 41

  6. Dissipation term: N � � L ( ρ ) kk = − ( γ lk ρ kk + γ kl ρ ll ) , L ( ρ ) lk l � = k = − Γ lk ρ lk , � � l � = k where γ kl , Γ kl are real non-negative constants describing : γ kl - the population relaxation from state k to state l ; Γ kl = Γ lk - de-phasing rate of the transition from state k to state l . � ρ 11 � 1 + z � � ρ 12 = 1 x + iy ρ = 2-levels systems: ρ 21 ρ 22 x − iy 1 − z 2 where x = 2 ℜ [ ρ 12 ] , y = 2 ℑ [ ρ 12 ] , z = ρ 22 − ρ 11 . Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 5 / 41

  7. Dissipation term: N � � L ( ρ ) kk = − ( γ lk ρ kk + γ kl ρ ll ) , L ( ρ ) lk l � = k = − Γ lk ρ lk , � � l � = k where γ kl , Γ kl are real non-negative constants describing : γ kl - the population relaxation from state k to state l ; Γ kl = Γ lk - de-phasing rate of the transition from state k to state l . � ρ 11 � 1 + z � � ρ 12 = 1 x + iy ρ = 2-levels systems: ρ 21 ρ 22 x − iy 1 − z 2 where x = 2 ℜ [ ρ 12 ] , y = 2 ℑ [ ρ 12 ] , z = ρ 22 − ρ 11 . Control Hamiltonian: H 1 = − σ x E x − σ y E y , where E x , E y are linearly polarized laser fields Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 5 / 41

  8. Dissipation term: N � � L ( ρ ) kk = − ( γ lk ρ kk + γ kl ρ ll ) , L ( ρ ) lk l � = k = − Γ lk ρ lk , � � l � = k where γ kl , Γ kl are real non-negative constants describing : γ kl - the population relaxation from state k to state l ; Γ kl = Γ lk - de-phasing rate of the transition from state k to state l . � ρ 11 � 1 + z � � ρ 12 = 1 x + iy ρ = 2-levels systems: ρ 21 ρ 22 x − iy 1 − z 2 where x = 2 ℜ [ ρ 12 ] , y = 2 ℑ [ ρ 12 ] , z = ρ 22 − ρ 11 . Control Hamiltonian: H 1 = − σ x E x − σ y E y , where E x , E y are linearly polarized laser fields Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 5 / 41

  9. Lindblad equations for 2-levels systems ( � = 1 )  ˙ x = − Γ x + u 2 z      ˙ y = − Γ y − u 1 z (2)     ˙ z = γ − − γ + z + u 1 y − u 2 x  with γ − = γ 12 − γ 21 , γ + = γ 12 + γ 21 , and 2 Γ ≥ γ + ≥ | γ − | . q = ( x , y , z ) belongs to the invariant Block ball � q � ≤ 1 � q � = 1 - pure state ( 0 , 0 , γ − γ + ) - the equilibrium state of the free motion Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 6 / 41

  10. Lindblad equations for 2-levels systems ( � = 1 )  ˙ x = − Γ x + u 2 z      ˙ y = − Γ y − u 1 z (2)     ˙ z = γ − − γ + z + u 1 y − u 2 x  with γ − = γ 12 − γ 21 , γ + = γ 12 + γ 21 , and 2 Γ ≥ γ + ≥ | γ − | . q = ( x , y , z ) belongs to the invariant Block ball � q � ≤ 1 � q � = 1 - pure state ( 0 , 0 , γ − γ + ) - the equilibrium state of the free motion Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 6 / 41

  11. Problem 2: control of a spin- 1 2 particle in dissipative media Bloch equations: M x = − 1 M y = − 1 ˙ ˙ M x + u 2 M z ; M y − u 1 M z ; (3) T 2 T 2 M z = 1 ˙ ( M 0 − M z ) + u 1 M y − u 2 M x , T 1 M = ( M x , M y , M z ) - magnetization vector; T 1 , T 2 - longitudinal and transverse relaxation times, 2 T 1 ≥ T 2 ; M 0 = ( 0 , 0 , M 0 ) - thermal equilibrium point; u = ( u 1 , u 2 , 0 ) - controlled magnetic field. 1 Γ = T − 1 γ + = γ − = T − 1 Normalization : q = ( x , y , z ) = M 0 M , 2 , 1 = ⇒ Lindblad equations for γ + = γ − Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 7 / 41

  12. Problem 2: control of a spin- 1 2 particle in dissipative media Bloch equations: M x = − 1 M y = − 1 ˙ ˙ M x + u 2 M z ; M y − u 1 M z ; (3) T 2 T 2 M z = 1 ˙ ( M 0 − M z ) + u 1 M y − u 2 M x , T 1 M = ( M x , M y , M z ) - magnetization vector; T 1 , T 2 - longitudinal and transverse relaxation times, 2 T 1 ≥ T 2 ; M 0 = ( 0 , 0 , M 0 ) - thermal equilibrium point; u = ( u 1 , u 2 , 0 ) - controlled magnetic field. 1 Γ = T − 1 γ + = γ − = T − 1 Normalization : q = ( x , y , z ) = M 0 M , 2 , 1 = ⇒ Lindblad equations for γ + = γ − Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 7 / 41

  13. Control setting ( P ) q = F 0 ( q ) + u 1 F 1 ( q ) + u 2 F 2 ( q ) , ˙ q 0 , q T − fixed and F 0 , F 1 , F 2 ∈ Vec ( R 3 ) :       − Γ x 0 z  ,  ,  . F 0 = − Γ y F 1 = − z F 2 = 0    γ − − γ + z y − x I. Minimal time problem ( P T ) : ( P ) , � u � ≤ 1 , T − → min Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 8 / 41

  14. Control setting ( P ) q = F 0 ( q ) + u 1 F 1 ( q ) + u 2 F 2 ( q ) , ˙ q 0 , q T − fixed and F 0 , F 1 , F 2 ∈ Vec ( R 3 ) :       − Γ x 0 z  ,  ,  . F 0 = − Γ y F 1 = − z F 2 = 0    γ − − γ + z y − x I. Minimal time problem ( P T ) : ( P ) , � u � ≤ 1 , T − → min II. Energy minimizing problem ( P E ) : ( P ) , T - fixed, T � 1 u 2 1 ( t ) + u 2 2 ( t ) dt → min 2 0 Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 8 / 41

  15. Control setting ( P ) q = F 0 ( q ) + u 1 F 1 ( q ) + u 2 F 2 ( q ) , ˙ q 0 , q T − fixed and F 0 , F 1 , F 2 ∈ Vec ( R 3 ) :       − Γ x 0 z  ,  ,  . F 0 = − Γ y F 1 = − z F 2 = 0    γ − − γ + z y − x I. Minimal time problem ( P T ) : ( P ) , � u � ≤ 1 , T − → min II. Energy minimizing problem ( P E ) : ( P ) , T - fixed, T � 1 u 2 1 ( t ) + u 2 2 ( t ) dt → min 2 0 Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 8 / 41

  16. The Hamiltonian of ( P ) h u ( ξ ) = h 0 ( ξ ) + u 1 h 1 ( ξ ) + u 2 h 1 ( ξ ) − p 0 2 ( u 2 1 + u 2 2 ) , p ∈ T ∗ q R 3 , h i ( ξ ) = � p , F i ( q ) � , ξ = ( p , q ) , p 0 ∈ { 0 , 1 } Case ( P E ) : in the normal case ( p 0 = 1 ) optimal controls are u i ( ξ ) = h i ( ξ ) , i = 1 , 2 , ξ ∈ T ∗ R 3 . Normal extremals are solutions of the Hamiltonian system associated to h E ( ξ ) = h 0 ( ξ ) + 1 2 ( h 2 1 ( ξ ) + h 2 2 ( ξ )) . Nataliya Shcherbakova (N7, Toulouse) Optimal control of a dissipative 2-level quantum system October 2010 9 / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend