optimal control of 2 levels dissipative quantum control
play

Optimal control of 2-levels dissipative quantum control systems: - PowerPoint PPT Presentation

Optimal control of 2-levels dissipative quantum control systems: analytical aspects Nataliya Shcherbakova ENSEEIHT, Toulouse, France April 27, 2010 Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 1 / 27


  1. Optimal control of 2-levels dissipative quantum control systems: analytical aspects Nataliya Shcherbakova ENSEEIHT, Toulouse, France April 27, 2010 Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 1 / 27

  2. Main collaborators Bernard Bonnard, Instutut de Mathématiques de Bourgogne, UMR CNRS 5584; Dominique Sugny, Institut Carnot de Bourgogne, UMR CNRS 5209; Olivier Cots, ENSEEIHT and Instutut de Mathématiques de Bourgogne. Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 2 / 27

  3. Main publications B. Bonnard, D. Sugny, Time-minimal control of dissipative two-level quantum systems: the integrable case , SIAM J. on Control and Optimization, vol.48 (2009), pp. 1289-1308 B. Bonnard, M. Chyba, D. Sugny, Time-minimal control of dissipative two-level quantum systems: the generic case , IEEE Transactions on Automatic control, vol. 54, N.11 (2009), pp.2598 - 2610 B. Bonnard, N. Shcherbakova, D. Sugny, The smooth continuation method in optimal control with an application to quantum systems , 2009, to appear in ESAIM-COCV B. Bonnard, O.Cots, N. Shcherbakova, D. Sugny, The energy minimization problem for two-level dissipative quantum systems , submitted Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 3 / 27

  4. Problem : control of the dynamics of finite-dimensional quantum system interacting with a dissipative environment: i � ∂ρ ∂ t = [ H 0 + H 1 , ρ ] + i L ( ρ ) , H 0 - the field-free Hamiltonian of the system H 1 - the Hamiltonian of the interaction with the control field L - the dissipation operator ρ - the density matrix (i.e. positive semi-definite Hermitian operator) s.t. tr ( ρ 2 ) ≤ 1 tr ( ρ ) = 1 , Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 4 / 27

  5. Problem : control of the dynamics of finite-dimensional quantum system interacting with a dissipative environment: i � ∂ρ ∂ t = [ H 0 + H 1 , ρ ] + i L ( ρ ) , H 0 - the field-free Hamiltonian of the system H 1 - the Hamiltonian of the interaction with the control field L - the dissipation operator ρ - the density matrix (i.e. positive semi-definite Hermitian operator) s.t. tr ( ρ 2 ) ≤ 1 tr ( ρ ) = 1 , Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 4 / 27

  6. N � ρ kk = − i [ H 0 + H 1 , ρ ] kk − ˙ ( γ lk ρ kk + γ kl ρ ll ) l � = k ρ lk = − i [ H 0 + H 1 , ρ ] lk − Γ lk ρ lk , ˙ l � = k , � = 1 ; γ kl , Γ kl are real non-negative constants; γ kl - the population relaxation from state k to state l ; Γ kl = Γ lk - de-phasing rate of the transition from state k to state l . Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 5 / 27

  7. N � ρ kk = − i [ H 0 + H 1 , ρ ] kk − ˙ ( γ lk ρ kk + γ kl ρ ll ) l � = k ρ lk = − i [ H 0 + H 1 , ρ ] lk − Γ lk ρ lk , ˙ l � = k , � = 1 ; γ kl , Γ kl are real non-negative constants; γ kl - the population relaxation from state k to state l ; Γ kl = Γ lk - de-phasing rate of the transition from state k to state l . Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 5 / 27

  8. Lindblad equations for 2-levels systems Relevant physical models for 2-levels systems: control of molecular alignment by laser fields in dissipative media; spin- 1 2 particle controlled by magnetic field. � ρ 11 � 1 + z � � ρ 12 = 1 x + iy ρ = ρ 21 ρ 22 x − iy 1 − z 2 where x = 2 ℜ [ ρ 12 ] , y = 2 ℑ [ ρ 12 ] , z = ρ 22 − ρ 11 . Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 6 / 27

  9. Lindblad equations for 2-levels systems Relevant physical models for 2-levels systems: control of molecular alignment by laser fields in dissipative media; spin- 1 2 particle controlled by magnetic field. � � � � ρ 11 ρ 12 = 1 1 + z x + iy ρ = ρ 21 ρ 22 x − iy 1 − z 2 where x = 2 ℜ [ ρ 12 ] , y = 2 ℑ [ ρ 12 ] , z = ρ 22 − ρ 11 . The state q = ( x , y , z ) belongs to the Bloch ball � q � ≤ 1 and satisfies the Lindblad equations x = − Γ x + u 2 z , ˙ y = − Γ y − u 1 z , ˙ z = γ − − γ + z + u 1 y − u 2 x ˙ with γ − = γ 12 − γ 21 , γ + = γ 12 + γ 21 , and 2 Γ ≥ γ + ≥ | γ − | . Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 6 / 27

  10. Lindblad equations for 2-levels systems Relevant physical models for 2-levels systems: control of molecular alignment by laser fields in dissipative media; spin- 1 2 particle controlled by magnetic field. � � � � ρ 11 ρ 12 = 1 1 + z x + iy ρ = ρ 21 ρ 22 x − iy 1 − z 2 where x = 2 ℜ [ ρ 12 ] , y = 2 ℑ [ ρ 12 ] , z = ρ 22 − ρ 11 . The state q = ( x , y , z ) belongs to the Bloch ball � q � ≤ 1 and satisfies the Lindblad equations x = − Γ x + u 2 z , ˙ y = − Γ y − u 1 z , ˙ z = γ − − γ + z + u 1 y − u 2 x ˙ with γ − = γ 12 − γ 21 , γ + = γ 12 + γ 21 , and 2 Γ ≥ γ + ≥ | γ − | . ( 0 , 0 , γ − γ + ) - the equilibrium state of the free motion ; � q � = 1 - pure state Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 6 / 27

  11. Lindblad equations for 2-levels systems Relevant physical models for 2-levels systems: control of molecular alignment by laser fields in dissipative media; spin- 1 2 particle controlled by magnetic field. � � � � ρ 11 ρ 12 = 1 1 + z x + iy ρ = ρ 21 ρ 22 x − iy 1 − z 2 where x = 2 ℜ [ ρ 12 ] , y = 2 ℑ [ ρ 12 ] , z = ρ 22 − ρ 11 . The state q = ( x , y , z ) belongs to the Bloch ball � q � ≤ 1 and satisfies the Lindblad equations x = − Γ x + u 2 z , ˙ y = − Γ y − u 1 z , ˙ z = γ − − γ + z + u 1 y − u 2 x ˙ with γ − = γ 12 − γ 21 , γ + = γ 12 + γ 21 , and 2 Γ ≥ γ + ≥ | γ − | . ( 0 , 0 , γ − γ + ) - the equilibrium state of the free motion ; � q � = 1 - pure state Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 6 / 27

  12. Control setting Lindblad equations: ( P ) q = F 0 ( q ) + u 1 F 1 ( q ) + u 2 F 2 ( q ) , ˙ where F 0 , F 1 , F 2 ∈ Vec ( R 3 ) :       − Γ x 0 z  ,  ,  . − Γ y − z F 0 = F 1 = F 2 = 0    γ − − γ + z − x y I. Minimal time problem: ( P ) , � u � ≤ 1 , T − → min Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 7 / 27

  13. Control setting Lindblad equations: ( P ) q = F 0 ( q ) + u 1 F 1 ( q ) + u 2 F 2 ( q ) , ˙ where F 0 , F 1 , F 2 ∈ Vec ( R 3 ) :       − Γ x 0 z  ,  ,  . − Γ y − z F 0 = F 1 = F 2 = 0    γ − − γ + z − x y I. Minimal time problem: ( P ) , � u � ≤ 1 , T − → min II. Energy minimizing problem: ( P ) , T - fixed, T � 1 � u 2 1 ( t ) + u 2 � 2 ( t ) dt → min 2 0 Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 7 / 27

  14. Control setting Lindblad equations: ( P ) q = F 0 ( q ) + u 1 F 1 ( q ) + u 2 F 2 ( q ) , ˙ where F 0 , F 1 , F 2 ∈ Vec ( R 3 ) :       − Γ x 0 z  ,  ,  . − Γ y − z F 0 = F 1 = F 2 = 0    γ − − γ + z − x y I. Minimal time problem: ( P ) , � u � ≤ 1 , T − → min II. Energy minimizing problem: ( P ) , T - fixed, T � 1 � u 2 1 ( t ) + u 2 � 2 ( t ) dt → min 2 0 Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 7 / 27

  15. Minimal time problem : preliminary analysis The Hamiltonian of minimal time problem h u ( ξ ) = h 0 ( ξ ) + u 1 h 1 ( ξ ) + u 2 h 1 ( ξ ) , p ∈ T ∗ q R 3 , h i ( ξ ) = � p , F i ( q ) � , ξ = ( p , q ) , h i ( ξ ) √ PMP : the optimal controls are u i ( ξ ) = 2 ( ξ ) , i = 1 , 2 , h 2 1 ( ξ )+ h 2 ξ ∈ T ∗ R 3 \ Σ , where Σ = { ξ : h 1 ( ξ ) = h 2 ( ξ ) = 0 } defines the switching surface . Regular extremals are solutions of the Hamiltonian system associated to � h 2 1 ( ξ ) + h 2 h ( ξ ) = h 0 ( ξ ) + 2 ( ξ ) . (1) Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 8 / 27

  16. Minimal time problem : preliminary analysis The Hamiltonian of minimal time problem h u ( ξ ) = h 0 ( ξ ) + u 1 h 1 ( ξ ) + u 2 h 1 ( ξ ) , p ∈ T ∗ q R 3 , h i ( ξ ) = � p , F i ( q ) � , ξ = ( p , q ) , h i ( ξ ) √ PMP : the optimal controls are u i ( ξ ) = 2 ( ξ ) , i = 1 , 2 , h 2 1 ( ξ )+ h 2 ξ ∈ T ∗ R 3 \ Σ , where Σ = { ξ : h 1 ( ξ ) = h 2 ( ξ ) = 0 } defines the switching surface . Regular extremals are solutions of the Hamiltonian system associated to � h 2 1 ( ξ ) + h 2 h ( ξ ) = h 0 ( ξ ) + 2 ( ξ ) . (1) Proposition. The Hamiltonian system associated to h admits a first integral of the form h 3 ( ξ ) = � p , [ F 1 , F 2 ]( q ) � , ξ = ( p , q ) , p ∈ T ∗ q R 3 . Nataliya Shcherbakova (N7, Toulouse) 2 levels dissipative quantum systems April 2010 8 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend