finite volume method for linear and non linear elliptic
play

Finite volume method for linear and non linear elliptic problems - PowerPoint PPT Presentation

Finite volume method for linear and non linear elliptic problems with discontinuities Franck BOYER and Florence HUBERT L.A.T.P. - Marseille, FRANCE Paris December 2007 1/ 46 O UTLINES I NTRODUCTION The classical finite volume scheme


  1. Finite volume method for linear and non linear elliptic problems with discontinuities Franck BOYER and Florence HUBERT L.A.T.P. - Marseille, FRANCE Paris December 2007 1/ 46

  2. O UTLINES I NTRODUCTION The classical finite volume scheme Anisotropic operator Nonlinear operator Operator with discontinuous coefficients References T HE standart DDFV SCHEME Assumptions on the continuous problem The meshes Construction of the scheme Convergence of DDFV scheme T HE M -DDFV SCHEME The method in 1D The method in 2D A NUMERICAL ALGORITHM N UMERICAL RESULTS 2/ 46

  3. O UTLINES I NTRODUCTION The classical finite volume scheme Anisotropic operator Nonlinear operator Operator with discontinuous coefficients References T HE standart DDFV SCHEME Assumptions on the continuous problem The meshes Construction of the scheme Convergence of DDFV scheme T HE M -DDFV SCHEME The method in 1D The method in 2D A NUMERICAL ALGORITHM N UMERICAL RESULTS 3/ 46

  4. T HE SCHEME FV4 Approximate the solution (for Dirichlet BC for instance) of − ∆ u = f (*) in an open bounded set Ω discretized by control volumes K (ex : triangles). The finite volume scheme principle ◮ Integrate (*) overall control volumes : � � � � f = − ∆ u = − ∇ u · n K σ . σ K K σ ⊂ ∂ K σ ◮ Approximate normal fluxes � L K ∇ u · n K σ n K σ τ σ x K x L ◮ Taylor expansion for σ = K | L � | σ | u ( x L ) − u ( x L ) x L x K � ∼ ∇ u · τ KL where τ KL = � � x L x K � d KL σ 4/ 46

  5. T HE FV4 SCHEME Approximate the solution (for Dirichlet BC for instance) of − ∆ u = f (*) The classical FV4 scheme � � � | σ | u L − u K � � f = − ∆ u = − ∇ u · n K σ ≈ . d KL σ K K σ ⊂ ∂ K σ ⊂ ∂ K C ONSISTENCY : YES if [ x K , x L ] ⊥ σ . σ L K x K x L ⇒ Such meshes are called admissible. 5/ 46

  6. T HE FV4 SCHEME Approximate the solution (for Dirichlet BC for instance) of − ∆ u = f (*) The classical FV4 scheme � � � | σ | u L − u K � � f = − ∆ u = − ∇ u · n K σ ≈ . d KL σ K K σ ⊂ ∂ K σ ⊂ ∂ K σ x K C ONSISTENCY : NO if [ x K x L ] ⊥ σ . L K x L ⇒ Such control volumes are said to be non admissible. 5/ 46

  7. E RROR ESTIMATES FOR THE FV4 SCHEME A DMISSIBLE M ESHES T HEOREM The error of the FV4 scheme in case of admissible meshes, is bounded by C size ( T ) . 6/ 46

  8. E RROR ESTIMATES FOR THE FV4 SCHEME N ON ADMISSIBLE MESHES T HEOREM If non admissible control volumes are located along a curve Γ , the error of the FV4 1 2 . scheme is bounded by C size ( T ) Example of non admissible meshes. 6/ 46

  9. A NISOTROPIC OPERATOR Can we only use admissible meshes ? NO 1. To few meshes satisfy the admissibilty condition (triangles, Vorono¨ ı, ...). 2. For the anisotropic operator − div ( A ∇ u ) = f the admissibility condition becomes : A [ x K x L ] � n ... 3. How write these geometrical condition in case of variable diffusion tensor ? − div ( A ( z ) ∇ u ) = f . A solution is to approximate the two componants of the gradient. 7/ 46

  10. N ONLINEAR DIFFUSION OPERATOR Example : p -laplacian Approximate in “ W 1 , p 0 (Ω) ” the unique solution of − div ( |∇ u | p − 2 ∇ u ) = f , 1 < p < + ∞ . Finite volume approach requires a consistant approximation of � |∇ u | p − 2 ∇ u · n . σ Impossible to obtain only with the two values u K and u L . � We still need an approximation of the whole gradient . 8/ 46

  11. T HE PROBLEM OF DISCONTINUOUS COEFFICIENTS σ L K − div ( k ( z ) ∇ u ) = f , x K x L k ( z ) ∈ R . 9/ 46

  12. T HE PROBLEM OF DISCONTINUOUS COEFFICIENTS σ L K − div ( k ( z ) ∇ u ) = f , x K x L k ( z ) ∈ R . If k is smooth, the finite volume FV4 writes : � � � u L − u K � � f = − div ( k ( z ) ∇ u ) dz = − ( k ( s ) ∇ u ) · n ds ≈ | σ | k σ , d KL � �� � σ K K σ ⊂ ∂ K σ ⊂ ∂ K = flux where k σ is an approximation of k on the edge σ � k σ = k ( x σ ) where k σ = 1 k ( s ) ds . | σ | σ 9/ 46

  13. T HE PROBLEM OF DISCONTINUOUS COEFFICIENTS σ L K − div ( k ( z ) ∇ u ) = f , x K x L k ( z ) ∈ R . If k is discontinuous across σ : k K ans k L on K et L : How to write the scheme ? We look for k σ such that � u L − u K | σ | k σ ≈ ( k ( s ) ∇ u ( s )) · n ds . d KL σ The simple choices of k σ = k K , k σ = k L where k σ = 1 2 ( k K + k L ) lead to non consistent fluxes. Indeed ∇ u · n is discontinuous across σ ! 9/ 46

  14. T HE PROBLEM OF DISCONTINUOUS COEFFICIENTS σ L K − div ( k ( z ) ∇ u ) = f , x K x L k ( z ) ∈ R . T AKE A NEW UNKNOWN u σ ON THE EDGE σ : Write the continuity of the approximate fluxes across σ . u L − u σ u σ − u K def = | σ | k L = | σ | k K . F KL d L σ d K σ Eliminate the fictive unknown u σ : u σ = k L d K σ u L + k K d L σ u K k L d K σ + k K d L σ u L − u K , with k σ = k K k L ( d K σ + d L σ ) = ⇒ F KL = | σ | k σ , harmonic mean value . k L d K σ + k K d L σ d KL 9/ 46

  15. T HE PROBLEM OF DISCONTINUOUS COEFFICIENTS In presence of discontinuities, the scheme converges but the order of convergence depends on the choice of k σ : � k + if x > 0 . 5 � � C AS 1D : − d k ( x ) d = f , with k ( x ) = dx u e k − if x < 0 . 5 dx ◮ k σ arithmetic mean value : order 1 2 ◮ k σ harmonic mean value : order 1 16 mailles, avec lambda=1si x<0.5 et 10 sinon 0.045 exact moyenne arithmétique 0.04 moyenne harmonique 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10/ 46

  16. R EFERENCES ◮ The finite volume scheme FV4 ◮ Eymard, Gallou¨ et, Herbin (00) ◮ Gradient reconstructions ◮ MPFA schemes. Aavatsmark (98/04), Lepotier (05),... ◮ Gradient FV schemes. Eymard, Gallou¨ et, Herbin (06), ... ◮ Mixte FV scheme Droniou, Eymard (06) ◮ Diamond schemes, DDFV schemes. Coudi` ere (99), Hermeline (00), Domelevo & Omn` es (05), Pierre (06), Delcourte & al (06), ABH (07), ....... ◮ Anisotropic problems with discontinuities ◮ Hermeline (03) ◮ BH (07) ◮ Benchmark - FVCA5 Aussois june 2008 11/ 46

  17. O UTLINES I NTRODUCTION The classical finite volume scheme Anisotropic operator Nonlinear operator Operator with discontinuous coefficients References T HE standart DDFV SCHEME Assumptions on the continuous problem The meshes Construction of the scheme Convergence of DDFV scheme T HE M -DDFV SCHEME The method in 1D The method in 2D A NUMERICAL ALGORITHM N UMERICAL RESULTS 12/ 46

  18. A IM AND NOTATIONS ◮ The DDFV scheme (D ISCRETE D UALITY F INITE V OLUME ) for � − div ( ϕ ( z , ∇ u e ( z ))) = f ( z ) , in Ω , u e = 0 , on ∂ Ω , ◮ Ω in an open bounded polygonal set R 2 . ◮ u �→ − div ( ϕ ( · , ∇ u )) is an monotonic and coercitive (of Leray-Lions type) operator. 13/ 46

  19. A SSUMPTIONS ON ϕ ◮ Let p ∈ ] 1 , ∞ [ , p ′ = p − 1 and f ∈ L p ′ (Ω) . ◮ p ≥ 2 to simplify. p ◮ ϕ : Ω × R 2 → R 2 is a Caratheorory function such that : ( ϕ ( z , ξ ) , ξ ) ≥ C ϕ ( | ξ | p − 1 ) , ( H 1 ) � | ξ | p − 1 + 1 � | ϕ ( z , ξ ) | ≤ C ϕ . ( H 2 ) ( ϕ ( z , ξ ) − ϕ ( z , η ) , ξ − η ) ≥ 1 | ξ − η | p . ( H 3 ) C ϕ 1 + | ξ | p − 2 + | η | p − 2 � � | ϕ ( z , ξ ) − ϕ ( z , η ) | ≤ C ϕ | ξ − η | . ( H 4 ) ◮ ϕ is lipschitz continuous with respect to z . 14/ 46

  20. T HE DDFV MESHES primal, dual and “diamond”. x L x K L K mesh M Primal control volumes � ( u K ) K ∈ M 15/ 46

  21. T HE DDFV MESHES primal, dual and “diamond”. x L∗ L∗ x L x K L K∗ K x K∗ mesh M ∗ mesh M Primal control volumes Dual control volumes � ( u K ) K ∈ M � ( u K∗ ) K∗ ∈ M ∗ 15/ 46

  22. T HE DDFV MESHES primal, dual and “diamond”. x L∗ L∗ x L x K L K∗ K x K∗ mesh M ∗ mesh D mesh M Primal control volumes Dual control volumes Diamond cells � ( u K ) K ∈ M � ( u K∗ ) K∗ ∈ M ∗ � Discrete gradient 15/ 46

  23. T HE DDFV SCHEME T HE DISCRETE GRADIENT � u L − u K � n K σ + u L∗ − u K∗ 1 T = T ∇ D u , ∀ diamond cell D . n K∗ σ | σ ∗ | | σ | sin α D x K∗ x K∗ u K + u K∗ 2 n K σ τ K∗L∗ u L + u K∗ 2 x K x K τ KL n ∗ K∗ σ ∗ x L x L u K + u L∗ 2 u L + u L∗ 2 x L∗ x L∗ � T · ( x L − x K ) = u L − u K , T ∇ D u Equivalent definition T · ( x L∗ − x K∗ ) = u L∗ − u K∗ . ∇ T D u 16/ 46

  24. T HE DDFV SCHEME T HE DISCRETE GRADIENT � u L − u K � n K σ + u L∗ − u K∗ 1 T = T ∇ D u , ∀ diamond cell D . n K∗ σ | σ ∗ | | σ | sin α D T HE STANDARD DDFV SCHEME Classical finite volume formulation : � � T ) , n K σ ) = − | σ | ( ϕ D ( ∇ T f ( z ) dz , ∀ K ∈ M , D u K σ ∈E K � � T ) , n K∗ σ ) = K∗ f ( z ) dz , ∀ K∗ ∈ M ∗ , | σ ∗ | ( ϕ D ( ∇ T − D u σ ∗ ∈E K∗ with � ϕ D ( ξ ) = 1 ϕ ( z , ξ ) dz , approximate flux on the diamond cell | D | D 16/ 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend