finite volume method for linear and non linear elliptic
play

Finite volume method for linear and non linear elliptic problems - PowerPoint PPT Presentation

Finite volume method for linear and non linear elliptic problems with discontinuities Franck BOYER et Florence HUBERT L.A.T.P . - Marseille, FRANCE DD17 - 2006 1/ 37 Plan P LAN 1 I NTRODUCTION 2 T HE DDFV SCHEME 3 T HE 1D PROBLEM 4 T HE 2D


  1. Finite volume method for linear and non linear elliptic problems with discontinuities Franck BOYER et Florence HUBERT L.A.T.P . - Marseille, FRANCE DD17 - 2006 1/ 37

  2. Plan P LAN 1 I NTRODUCTION 2 T HE DDFV SCHEME 3 T HE 1D PROBLEM 4 T HE 2D PROBLEM 5 A SADDLE - POINT ALGORITHM 6 N UMERICAL RESULTS 2/ 37

  3. Introduction P LAN 1 I NTRODUCTION The DDFV scheme 2 The 1D problem 3 The 2D problem 4 A saddle-point algorithm 5 Numerical results 6 3/ 37

  4. Introduction I NTRODUCTION . ◮ DDFV scheme (D ISCRETE D UALITY F INITE V OLUME ) for � − div ( ϕ ( z , ∇ u e ( z ))) = f ( z ) , in Ω , (1) u e = 0 , on ∂ Ω , Ω polygonal open set in R 2 . u �→ − div ( ϕ ( · , ∇ u )) is coercitive, monotonous (of Leray-Lions type). ϕ presents discontinuities with respect to the space variable z (Transmission problem). Example : Ω 1 Ω 2 “ ” − div |∇ u | p − 2 ∇ u = f 1 k ( x ) |∇ u | p − 2 ∇ u − div = f 2 4/ 37

  5. Introduction I NTRODUCTION With discontinuities the DDFV scheme converges but slowly : In the linear case : 1D : − ( λ ± u e ′ ) ′ = f Arythmetic mean-value : order 1 2 Harmonic mean-value : order 1 16 mailles, avec lambda=1si x<0.5 et 10 sinon 0.045 exact moyenne arithmétique 0.04 moyenne harmonique 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5/ 37

  6. Introduction I NTRODUCTION With discontinuities, the DDFV scheme converges but slowly : In the linear case : 2D : − div ( A ( z ) ∇ u e ) = f DDFV scheme : order 1 2 Improved DDFV scheme (Hermeline, BH) : order 1 −1 −2 −1 10 10 10 ordre 0.52 ordre 0.96 ordre 1.04 ordre 1 ordre 1.99 ordre 2.02 −2 10 −3 10 −3 −2 10 10 −4 10 −4 10 −5 −5 −3 10 10 10 −3 −2 −1 −3 −2 −1 −3 −2 −1 10 10 10 10 10 10 10 10 10 L ∞ error L 2 error H 1 error � 10 � 2 A = . 2 1 6/ 37

  7. Introduction B IBLIOGRAPHIE Anisotropy problems with discontinuities EGH (00), Hermeline (03) Gradient reconstruction problems “O-scheme”, “U-scheme” Aavatsmark, Lepotier,...... Gradient FV schemes. Eymard, Gallou¨ et, Herbin,... Mixed FV schemes. Droniou, Eymard (06) DDFV schemes. Coudi` ere (99), Hermeline (00), Domelevo & Omn` es (05), ABH (06), Pierre (06), Delcourte & al (06)....... 7/ 37

  8. Introduction H YPOTH ` ESES SUR ϕ Let p ∈ ] 1 , ∞ [ , p ′ = p − 1 and f ∈ L p ′ (Ω) . ◮ p ≥ 2 in this talk. p ϕ : Ω × R 2 → R 2 is a Caratheodory function such that : | ξ | p − 1 � � ( ϕ ( z , ξ ) , ξ ) ≥ C ϕ , ( H 1 ) � | ξ | p − 1 + 1 � | ϕ ( z , ξ ) | ≤ C ϕ . ( H 2 ) ( ϕ ( z , ξ ) − ϕ ( z , η ) , ξ − η ) ≥ 1 | ξ − η | p . ( H 3 ) C ϕ 1 + | ξ | p − 2 + | η | p − 2 � � | ϕ ( z , ξ ) − ϕ ( z , η ) | ≤ C ϕ | ξ − η | . ( H 4 ) ϕ is piecewisely lipschitz in z ⇒ Assumption ( H 5 ) . 8/ 37

  9. The DDFV scheme P LAN Introduction 1 2 T HE DDFV SCHEME The 1D problem 3 The 2D problem 4 A saddle-point algorithm 5 Numerical results 6 9/ 37

  10. The DDFV scheme T HE DDFV SCHEME The discrete unknowns : where u M = ( u K ) K ∈ M , u M ∗ = ( u K∗ ) K∗ ∈ M ∗ u T = u M , u M ∗ � � The discrete gradient : ∇ T u T is constant on diamond cells � u L − u K ν + u L∗ − u K∗ � 1 D u T = ν ∗ ∇ T , ∀D . | σ ∗ | sin α D | σ | x K∗ u K + u K∗ 2 u L + u K∗ 2 x K x L u K + u L∗ 2 u L + u L∗ 2 x L∗ 10/ 37

  11. The DDFV scheme T HE DDFV MESHES primal, dual and “diammond”. x L∗ L∗ x L x K L K∗ K x K∗ maillage M ∗ maillage D maillage M 11/ 37

  12. The DDFV scheme T HE DDFV SCHEME � D u T ) , ν K ) = � | σ | ( ϕ D ( ∇ T − f ( z ) dz , ∀ K ∈ M , K D σ,σ ∗ ∩ K � = ∅ � D u T ) , ν K∗ ) = K∗ f ( z ) dz , ∀ K∗ ∈ M ∗ , � | σ ∗ | ( ϕ D ( ∇ T − D σ,σ ∗ ∩ K∗ � = ∅ with ϕ D ( ξ ) = 1 � ϕ ( z , ξ ) dz . | D | D Discrete Duality formulation : � � D u T ) , ∇ T D v T ) = fv M ∗ dz , ∀ v T ∈ R T . � fv M dz + | D | ( ϕ D ( ∇ T 2 Ω Ω D ∈ D 12/ 37

  13. The DDFV scheme K NOWN RESULTS Case p = 2 : Domelevo & Omn` es ⇒ Estimate in O ( h ) for a large class of meshes. General case : Andreianov, Boyer & Hubert ⇒ The scheme converges. ⇒ If u e ∈ W 2 , p (Ω) and � � ∂ϕ � 1 + | ξ | p − 1 � � � , ∀ ξ ∈ R 2 . ϕ Lip. on Ω , with ∂ z ( z , ξ ) � ≤ C ϕ ( H 5 ) � � � Then 1 � u e − u M � L p + � u e − u M ∗ � L p + �∇ u e −∇ T u T � L p ≤ C size ( T ) p − 1 . 13/ 37

  14. The DDFV scheme Z OOM ON THE DIAMOND CELLS Diamond cells are supposed to be convex. Each diamond cell is cut into four triangles Q . x K∗ x K∗ | σ K∗ | Q K , K∗ ν x K x K Q L , K∗ τ ν ∗ τ ∗ x D Q K , L∗ Q L , L∗ α D | σ L∗ | x L x L | σ K | x L∗ x L∗ | σ L | 14/ 37

  15. The DDFV scheme A IMS If ϕ presents some discontinuities on a curve Γ u e �∈ W 2 , p (Ω) . The numerical fluxes are no more consistent along Γ . We assume that on each Q , ϕ is Lip. and saitifies ( H 5 ) . ◮ We want to get the consistency of the fluxes on Γ . ◮ We contruct a new approximation ϕ N D of the non linearity on the diamond cell D . � D u T ) , ν K ) = � | σ | ( ϕ N D ( ∇ T − f ( z ) dz , ∀ K ∈ M K D σ,σ ∗ ∩ K � = ∅ � D u T ) , ν K∗ ) = K∗ f ( z ) dz , ∀ K∗ ∈ M ∗ � | σ ∗ | ( ϕ N D ( ∇ T − D σ,σ ∗ ∩ K∗ � = ∅ 15/ 37

  16. The 1D problem P LAN Introduction 1 The DDFV scheme 2 3 T HE 1D PROBLEM The 2D problem 4 A saddle-point algorithm 5 Numerical results 6 16/ 37

  17. The 1D problem T HE 1D PROBLEM � ϕ − ( · ) , if x < 0 , Ω =] − 1 , 1 [ , ϕ ( x , · ) = . ϕ + ( · ) , if x > 0 Let x 0 = − 1 < . . . < x N = 0 < . . . < x N + M = 1 a discretization of [ − 1 , 1 ] . The 1D FV scheme reads for i ∈ { 0 , N + M − 1 } : � x i + 1 − F i + 1 + F i = f ( x ) dx . (2) x i with u i + 1 2 − u i − 1 F i = ϕ ( x i , ∇ i u T ) , ∇ i u T = 2 , ∀ i � = N , (3) x i + 1 2 − x i − 1 2 QUESTION : how to define F N ? 17/ 37

  18. The 1D problem T HE NEW GRADIENT We look for ˜ u such that 2 − ˜ ˜ u N + 1 u u − u N − 1 N u T = N u T = ∇ + ∇ − 2 , , h − h + N N we have N u T ) = ϕ + ( ∇ − N u T ) . ϕ − ( ∇ + u ˜ u N + 1 δ 2 u ¯ u N − 1 2 x N = 0 h − h + N N 18/ 37

  19. The 1D problem T HE NEW GRADIENT We look for ˜ u in the form h − 2 + h + N u N + 1 N u N − 1 u = ¯ ˜ u + δ, with ¯ u = 2 . h − N + h + N that is N u T = ∇ N u T − δ N u T = ∇ N u T + δ ∇ + , and ∇ − . h − h + N N u ˜ u N + 1 δ 2 u ¯ u N − 1 2 x N = 0 h − h + N N 18/ 37

  20. The 1D problem T HE NEW GRADIENT T HEOREM For all u T ∈ R N , there exists a unique δ N ( ∇ N u T ) such that ∇ N u T + δ N ( ∇ N u T ) ∇ N u T − δ N ( ∇ N u T ) � � � � def F N = ϕ − = ϕ + , h − h + N N The new scheme admits a unique solution. 1 p − 1 . The flux F N is consistent with an error in h 19/ 37

  21. The 1D problem E XAMPLE For two p − laplacian fluxes ϕ − ( ξ ) = k − | ξ + G − | p − 2 ( ξ + G − ) , and ϕ + ( ξ ) = k + | ξ + G + | p − 2 ( ξ + G + ) , where k − , k + ∈ R + and G − , G + ∈ R 2 . We obtain p − 1 �  1 1  p − 1 p − 1 ( h − N + h + N ) p − 2 �  k k � ∇ N u T + G � ∇ N u T + G � − + F N = , � �  1 1 � p − 1 + h − p − 1 h + N k N k − + where G is some arythmetic mean value of G − and G + defined by G = h − N G − + h + N G + . h − N + h + N Warning : the fluxes are not explicit in general ! 20/ 37

  22. The 2D problem P LAN Introduction 1 The DDFV scheme 2 The 1D problem 3 4 T HE 2D PROBLEM A saddle-point algorithm 5 Numerical results 6 21/ 37

  23. The 2D problem T HE NEW GRADIENT D u T is constant on each quarter of diamond ◮ ∇ N D u T = Q u T , � ∇ N 1 Q ∇ N Q ∈ Q D x K 1 2 ( u K + u K∗ ) � u σ K∗ − 1 2 ( u K + u K∗ ) 2 u σ K T = ∇ QK , K∗ u N ν x σ K sin α D | σ K | Q K , K∗ + u σ K − 1 2 ( u K + u K∗ ) ν ∗ � x K∗ x σ K∗ x D | σ K∗ | u σ K∗ That is Q u T = ∇ T D u T + B Q δ D , δ D ∈ R 4 , ∇ N where δ D is to be determined 1 | QK , K∗ | ( | σ K | ν ∗ , 0 , | σ K∗ | ν , 0 ) B QK , K∗ = 22/ 37

  24. The 2D problem C ONSISTENCY OF THE FLUX We note � ϕ Q ( ξ ) = ϕ ( z , ξ ) d µ ¯ Q ( z ) . Q and choose δ D ∈ R 4 such that � D u T + B QK , K∗ δ D ) , ν ∗ � � D u T + B QK , L∗ δ D ) , ν ∗ � ϕ QK , K∗ ( ∇ T ϕ QK , L∗ ( ∇ T = � D u T + B QL , K∗ δ D ) , ν ∗ � � D u T + B QL , L∗ δ D ) , ν ∗ � ϕ QL , K∗ ( ∇ T ϕ QL , L∗ ( ∇ T = � D u T + B QK , K∗ δ D ) , ν � � D u T + B QL , K∗ δ D ) , ν � ϕ QK , K∗ ( ∇ T ϕ QL , K∗ ( ∇ T = � D u T + B QK , L∗ δ D ) , ν � � D u T + B QL , L∗ δ D ) , ν � ϕ QK , L∗ ( ∇ T ϕ QL , L∗ ( ∇ T = ⇒ For all u T ∈ R T , and all diamond cell D , there exists a unique D u T ) ∈ R 4 that ensures such equalities. δ D ( ∇ T 23/ 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend