elliptic hypergeometric functions and elliptic difference
play

Elliptic hypergeometric functions and elliptic difference Painlev e - PowerPoint PPT Presentation

Elliptic hypergeometric functions and elliptic difference Painlev e equation Masatoshi NOUMI (Kobe University, Japan) ICMP 2018, Montreal, Canada (July 27, 2018) Abstract Elliptic hypergeometric functions are a new class of special functions


  1. Elliptic hypergeometric functions and elliptic difference Painlev´ e equation Masatoshi NOUMI (Kobe University, Japan) ICMP 2018, Montreal, Canada (July 27, 2018) Abstract Elliptic hypergeometric functions are a new class of special functions that have been developed during these two decades. In this talk I will give an overview of various as- pects of elliptic hypergeometric functions with emphasis on connections with integrable systems including the elliptic difference Painlev´ e equation.

  2. [1] Plan of this talk Part 1: Elliptic Hypergeometric Functions Part 2: Elliptic Difference Painlev´ e Equation

  3. [2] Part 1: Elliptic Hypergeometric Functions References for Part 1 [1] M. Ito and M. Noumi: Derivation of a BC n elliptic summation formula via the fundamental invariants, Constr. Approx. 45 (2017), 33–46 (arXiv:1504.07018, 11 pages). [2] M. Ito and M. Noumi: Evaluation of the BC n elliptic Selberg integral via the fundamental invari- ants, Proc. Amer. Math. Soc. 145 (2017), 689–703 (arXiv:1504.07317, 15 pages). [3] M. Ito and M. Noumi: A determinant formula associated with the elliptic hypergeometric integrals of type BC n (in preparation).

  4. [3] q -Hypergeometric integrals of Selberg type 1 ○ Selberg integral (1942) Generalization of the beta integral to a multiple integral involving a power of the difference product (Atle Selberg, 1917–2007): ∫ 1 ∫ 1 n 1 | z i − z j | 2 γ dz 1 · · · dz n ∏ ∏ z α − 1 (1 − z i ) β − 1 · · · i n ! 0 0 i =1 1 ≤ i<j ≤ n n Γ( α + ( j − 1) γ ) Γ( β + ( j − 1) γ ) Γ( jγ ) ∏ = Γ( α + β + ( n + j − 2) γ ) Γ( γ ) j =1 Variations and extensions of this formula, including the cases of integrals of trigono- metric and elliptic fuctions, provide with foundations for a variety of theories of hyper- geometric functions in many variables. • Hypergeometric integral of Selberg type = Selberg integral in the broad sense Integral of powers of polynomials which involves a power of a difference product or a Weyl denominator • Selberg integral in the narrow sense Hypergeometric integral of Selberg type which admits an evaluation formula in terms of the gamma function

  5. [4] ○ q -Hypergeometric integrals of Selberg type z = ( z 1 , . . . , z n ): coordinates of the n -dimensional algebraic torus T n = ( C ∗ ) n There are two types of q -hypergeometric integrals (with base q ∈ C ∗ , | q | < 1): Jackson integrals /infinite multiple series (Aomoto–Ito), versus ordinary integrals over n -cycles in T n (Macdonald) • Jackson integral: With a base point ζ = ( ζ 1 , . . . , ζ n ) ∈ ( C ∗ ) n , the Jackson integral of a function ϕ ( z ) is defined as the infinite multiple series ∫ ζ 1 ∞ ∫ ζ n ∞ ∞ ∞ 1 ϕ ( z 1 , . . . , z n ) d q z 1 · · · d q z n ∑ ∑ ϕ ( q ν 1 ζ 1 , . . . , q ν n ζ n ) . · · · = · · · (1 − q ) n z 1 · · · z n 0 0 ν 1 = −∞ ν n = −∞ In the notation of multi-indices ν = ( ν 1 , . . . , ν n ) ∈ Z n , q ν ζ = ( q ν 1 ζ 1 , . . . , q ν n ζ n ) ∈ ( C ∗ ) n , ∫ ζ ∞ 1 d q z 1 · · · d q z n ∑ ϕ ( ζq ν ) , ϕ ( z ) ω q ( z ) = ω q ( z ) = . (1 − q ) n z 1 · · · z n 0 ν ∈ Z n Sum of the values of ϕ ( z ) over the multiplicative lattice Λ ζ = q Z n ζ ⊂ ( C ∗ ) n . • Ordinary integral over an n -cycle: 1 ϕ ( z 1 , . . . , z n ) dz 1 · · · dz n 1 dz 1 · · · dz n ∫ ∫ ϕ ( z ) ω ( z ) = (2 π √− 1) n , ω ( z ) = (2 π √− 1) n z 1 · · · z n z 1 · · · z n C C Typically, the real torus T n R = {| z 1 | = · · · = | z n | = 1 } is chosen for the n -cycle C .

  6. [5] ○ q -Shifted factorials • q -Shifted factorials: ∞ ( z ; q ) ∞ ∏ (1 − q i z ) , ( z ; q ) ∞ = ( z ; q ) k = ( k ∈ Z ) ( q k z ; q ) ∞ i =0 For k = 0 , 1 , 2 , . . . , 1 ( z ; q ) k = (1 − z )(1 − qz ) · · · (1 − q k − 1 z ) , ( z ; q ) − k = (1 − q − k z )(1 − q − k +1 z ) · · · (1 − q − 1 z ) . q -Shifted factorials are regarded as counterparts of power functions or gamma functions : ( q β z ; q ) ∞ ( q ; q ) ∞ (1 − z ) α − β ; (1 − q ) 1 − s → → Γ( s ) ( q α z ; q ) ∞ ( q s ; q ) ∞ For k ∈ Z or k = ∞ , a product of q -shifted factorials are often abbreviated as ( a 1 , . . . , a r ; q ) k = ( a 1 ; q ) k · · · ( a r ; q ) k .

  7. [6] ○ q -Beta and q -hypergeometric integrals (contour integrals) double sign: f ( z ± 1 ) = f ( z ) f ( z − 1 ) • Askey–Wilson q -beta integral: ( z ± 2 ; q ) ∞ 1 ∫ dz 2 ( abcd ; q ) ∞ 2 π √− 1 z = ( az ± 1 , bz ± 1 , cz ± 1 , dz ± 1 ; q ) ∞ ( q ; q ) ∞ ( ab, ac, ad, bc, bd, cd ; q ) ∞ C C : a closed curve separating the poles accumulating at z = 0 and those at z = ∞ . • Nassrallah–Rahman q -beta integral: Under the condition a 0 a 1 · · · a 5 = q , ∏ 5 ( z ± 2 ; q ) ∞ ( qa − 1 0 z ± 1 ; q ) ∞ 1 dz 2 i =1 ( q/a i a 0 ; q ) ∞ ∫ 2 π √− 1 z = ∏ 5 ∏ ( q ; q ) ∞ 1 ≤ i<j ≤ 5 ( a i a j ; q ) ∞ k =1 ( a k z ± 1 ; q ) ∞ C • Rahman’s q -hypergeometric integral: (Rahman 1986) Under the balancing condition a 0 a 1 · · · a 7 = q 2 , ( z ± 2 ; q ) ∞ i =0 , 7 ( qa − 1 i z ± 1 ; q ) ∞ ∏ ( a i a j ; q ) ∞ · ( q ; q ) ∞ ∫ dz ∏ 4 π √− 1 ∏ 6 z i =1 ( a i z ± 1 ; q ) ∞ C 1 ≤ i<j ≤ 6 ∏ 6 i =1 ( qa i /a 0 ; q ) ∞ ( q/a i a 7 ; q ) ∞ q/a 2 ( ) = 10 W 9 0 ; q/a 0 a 1 , q/a 0 a 2 , . . . , q/a 0 a 7 ; q, q ( q 2 a 2 0 ; q ) ∞ ( a 0 /a 7 ; q ) ∞ ∏ 6 i =1 ( qa i /a 7 ; q ) ∞ ( q/a i a 0 ; q ) ∞ q/a 2 ( ) + 10 W 9 7 ; q/a 1 a 7 , q/a 2 a 7 , . . . , q/a 6 a 7 ; q, q . ( q 2 a 2 7 ; q ) ∞ ( a 7 /a 0 ; q ) ∞ ∞ r 1 − q 2 k a 0 ( a 0 ; q ) k ( a i ; q ) k ∑ ∏ z k ( ) r +3 W r +2 a 0 ; a 1 , . . . , a r ; q, z = 1 − a 0 ( q ; q ) k ( qa 0 /a i ; q ) k k =0 i =1

  8. [7] ○ q -Hypergeometric integral of Selberg type z = ( z 1 , . . . , z n ): coordinates of the algebraic torus T n = ( C ∗ ) n • Gustafson’s q -Selberg integral (1990) [Askey–Wilson] For generic complex parameters a = ( a 1 , . . . , a 4 ) and t , n ( z ± 1 i z ± 1 ( z ± 2 j ; q ) ∞ 1 ∫ i ; q ) ∞ dz 1 · · · dz n ∏ ∏ (2 π √− 1) n ∏ 4 ( tz ± 1 i z ± 1 k =1 ( a k z ± 1 z 1 · · · z n j ; q ) ∞ i ; q ) ∞ C n i =1 1 ≤ i<j ≤ n ( ( t ; q ) ∞ n 2 n n ! ( a 1 a 2 a 3 a 4 t n + i − 2 ; q ) ∞ ) ∏ = ( q ; q ) n ( t i ; q ) ∞ ∏ 1 ≤ k<l ≤ 4 ( t i − 1 a k a l ; q ) ∞ ∞ i =1 The integrand is the weight function for the Koornwinder polynomials ( BC n ). [Nassrallah-Rahman] Under the balancing condition a 0 a 1 a 2 a 3 a 4 a 5 t 2 n − 2 = q 2 , n ( z ± 1 i z ± 1 ( z ± 2 i ; q ) ∞ ( qa − 1 0 z ± 1 j ; q ) ∞ 1 ∫ i ; q ) ∞ dz 1 · · · dz n ∏ ∏ (2 π √− 1) n ∏ 5 ( tz ± 1 i z ± 1 k =1 ( a k z ± 1 z 1 · · · z n j ; q ) ∞ i ; q ) ∞ C n i =1 1 ≤ i<j ≤ n ( ( t ; q ) ∞ n ∏ 5 2 n n ! k =1 ( t 1 − i q/a 0 a k ; q ) ∞ ) ∏ = ( q ; q ) n ( t i ; q ) ∞ ∏ 1 ≤ k<l ≤ 5 ( t i − 1 a k a l ; q ) ∞ ∞ i =1

  9. [8] Elliptic hypergeometric integrals of Selberg type 2 ○ Ruijsenaars’ elliptic gamma function With two (generic) bases p, q ∈ C ∗ , | p | < 1 , | q | < 1, ∞ Γ( z ; p, q ) = ( pq/z ; p, q ) ∞ ∏ (1 − p i q j z ) . , ( z ; p, q ) ∞ = ( z ; p, q ) ∞ i,j =0 It is a meromorphic function on C ∗ with simple poles at z = p − i q − j ( i, j = 0 , 1 , . . . ). ・ Jacobi theta function (in the multiplicative variable): θ ( pz ; p ) = − z − 1 θ ( z ; p ) , θ ( z ; p ) = ( z ; p ) ∞ ( p/z ; p ) ∞ ; θ ( p/z ; p ) = θ ( z ; p ) ・ The elliptic gamma function satisfies the following functional equations: Γ( pq/z ; p, q ) = Γ( z ; p, q ) − 1 Γ( qz ; p, q ) = θ ( z ; p )Γ( z ; p, q ) , ・ In the double sign notation f ( z ± 1 ) = f ( z ) f ( z − 1 ), ( z ± 1 ; p, q ) ∞ 1 = (1 − z ± 1 )( pz ± 1 ; p ) ∞ ( qz ± 1 ; q ) ∞ Γ( z ± 1 ; p, q ) = ( pqz ± 1 ; p, q ) ∞ = − z − 1 ( z, p/z ; p ) ∞ ( z, q/z ; q ) ∞ = − z − 1 θ ( z ; p ) θ ( z ; q ) holomorphic on C ∗ , splits into the product of two theta functions with bases p , q . ・ In the limit as p → 0, 1 θ ( z ; p ) → (1 − z ) , Γ( z ; p, q ) → , Γ( pz ; p, q ) → ( q/z ; q ) ∞ ( z ; q ) ∞

  10. [9] ○ Elliptic hypergeometric integral of Selberg type ( BC n ) • Elliptic beta integral (Spiridonov 2001) Under the balancing condition a 1 · · · a 6 = pq , ∏ 6 k =1 Γ( a k z ± 1 ; p, q ) ( p ; p ) ∞ ( q ; q ) ∞ dz ∫ ∏ 4 π √− 1 z = Γ( a k a l ; p, q ) Γ( z ± 2 ; p, q ) C 1 ≤ k<l ≤ 6 ・ Elliptic extension of the Nassrallah–Rahman q -beta integral ・ Integral version of the Frenkel–Turaev sum • Elliptic hypergeometric integral of Selberg type The following integral is called the BC n elliptic hypergeometric integral of Selberg type : 1 dz 1 · · · dz n ∫ (2 π √− 1) n I n ( a ) = C n Φ( z ; a ) ω ( z ) , ω ( z ) = z 1 · · · z n n ∏ m Γ( tz ± 1 i z ± 1 k =1 Γ( a k z ± 1 j ; p, q ) i ; p, q ) ∏ ∏ Φ( z ; a ) = Γ( z ± 2 Γ( z ± 1 i z ± 1 i ; p, q ) j ; p, q ) i =1 1 ≤ i<j ≤ n a = ( a 1 , . . . , a m ) ∈ ( C ∗ ) m , t ∈ C ∗ ・ When | a k | < 1 ( k = 1 , . . . , m ), | t | < 1, a standard choice for the n -cycle C n is the real torus T n { } R = | z 1 | = · · · = | z n | = 1 . When the parameters go out from this domain, the n -cycle should be deformed accordingly.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend