lattice qcd precision science for muon g 2 and ew physics
play

Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh - PowerPoint PPT Presentation

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura (GSI Helmholtz-Institut Mainz) Talk at PPP2020 Sep.


  1. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura (GSI Helmholtz-Institut Mainz) Talk at PPP2020 Sep. 01, 2020

  2. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Muon Anomalous Magnetic Moment a ℓ = e ,µ,τ Dirac Eq. with B: i � ∂ψ � � � � + β c 2 m ℓ + eA 0 ∂ t = α · − i � c ∇ − e A ψ , Nonlelativistic Limit, Pauli Eq.: μ B � ( − i � c ∇ − e A ) 2 i � ∂φ � ∂ t = − M ℓ · B + eA 0 φ , 2 m ℓ c Muon Strorage e � σ Magnetic Moment: M ℓ = g ℓ 2 , 2 m ℓ c In Dirac Theory: p g ℓ = 2 , a ℓ ≡ ( g ℓ − 2 ) / 2 = 0 , ω cyc = ω prec . s In QFT (with Loops) for Electron (M.Knecht ,NPPP2015): = 1 159 652 180 . 07 ( 6 )( 4 )( 77 ) × 10 − 12 ( O ( α 5 )) , a SM e exp = 1 159 652 180 . 73 ( 0 . 28 ) × 10 − 12 a [ 0 . 24 ppb ] . e a exp . = a SM µ ? µ

  3. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Muon Anomalous Magnetic Moment a ℓ = e ,µ,τ Dirac Eq. with B: i � ∂ψ � � � � + β c 2 m ℓ + eA 0 ∂ t = α · − i � c ∇ − e A ψ , Nonlelativistic Limit, Pauli Eq.: μ B � ( − i � c ∇ − e A ) 2 i � ∂φ � ∂ t = − M ℓ · B + eA 0 φ , 2 m ℓ c Muon Strorage e � σ Magnetic Moment: M ℓ = g ℓ 2 , 2 m ℓ c In Dirac Theory: p g ℓ = 2 , a ℓ ≡ ( g ℓ − 2 ) / 2 = 0 , ω cyc = ω prec . s In QFT (with Loops) for Electron (M.Knecht ,NPPP2015): = 1 159 652 180 . 07 ( 6 )( 4 )( 77 ) × 10 − 12 ( O ( α 5 )) , a SM e exp = 1 159 652 180 . 73 ( 0 . 28 ) × 10 − 12 a [ 0 . 24 ppb ] . e a exp . = a SM µ ? µ

  4. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary a exp . vs. a SM µ µ a contrib . × 10 10 SM contribution Ref. µ QED [5 loops] 11658471 . 8951 ± 0 . 0080 [Aoyama et al ’12] LO-HVP( O ( α 2 ) ) by pheno. 692 . 8 ± 2 . 4 [Keshavarzi et al ’19] 694 . 0 ± 4 . 0 [Davier et al ’19] 687 . 1 ± 3 . 0 [Benayoun et al ’19] 688 . 1 ± 4 . 1 [Jegerlehner ’17] NLO-HVP( O ( α 3 ) ) by pheno. − 9 . 84 ± 0 . 07 [Hagiwara et al ’11] [Kurz et al ’11] − 9 . 83 ± 0 . 04 [KNT19] NNLO-HVP( O ( α 4 ) ) by pheno. 1 . 24 ± 0 . 01 [Kurz et al ’14] HLbyL( O ( α 3 ) ) 10 . 5 ± 2 . 6 [Prades et al ’09] Weak (2 loops) 15 . 36 ± 0 . 10 [Gnendiger et al ’13] SM tot [0.42 ppm] 11659180 . 2 ± 4 . 9 [Davier et al ’11] [0.43 ppm] 11659182 . 8 ± 5 . 0 [Hagiwara et al ’11] 11659184 . 0 ± 5 . 9 [0.51 ppm] [Aoyama et al ’12] Exp [0.54 ppm] 11659208 . 9 ± 6 . 3 [Bennett et al ’06] Exp − SM 28 . 7 ± 8 . 0 [Davier et al ’11] 26 . 1 ± 7 . 8 [Hagiwara et al ’11] 24 . 9 ± 8 . 7 [Aoyama et al ’12] ) ≃ ( 720 ± 7 ) × 10 − 10 , | NoNewPhys = a ex. a LO-HVP µ − ( a QED + a EW µ + a (N)NLO-HVP + a HLbL µ µ µ µ

  5. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary a ℓ in QFT QFT Def. for a ℓ : � ¯ ℓ − ( p ) |J µ | ℓ − ( p ′ ) � = ¯ u ( p )Γ µ ( p , p ′ ) u ( p ′ ) = (1) Γ µ ( q = p − p ′ ) = γ µ F 1 ( q 2 ) + i σ µν q ν 2 m µ F 2 ( q 2 ) + · · · , (2) F 2 ( 0 ) = a ℓ = ( g ℓ − 2 ) / 2 . (3) Standard Model, Loop Corr.: a ℓ = α/ ( 2 π ) + · · · . BSM = MSSM (Padley et.al.’15) or TC (Kurachi et.al. ’13) etc.: γ ∝ ( m ℓ / Λ BSM ) 2 . µ µ Technicolor

  6. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Whitepaper (WP): Lattice QCD Consensus HVP,LO . 10 10 a µ ETM-18/19 Mainz/CLS-19 FHM-19 PACS-19 RBC/UKQCD-18 BMW-17 Mainz/CLS-17 HPQCD-16 ETM-13 KNT-19 DHMZ-19 BDJ-19 Jegerlehner-18 RBC/UKQCD-18 LQCD No New Physics No New Physics Pheno. Pheno+LQCD 600 650 700 750 Muon g-2 Theory Initiative Whitepaper, arXiv:2006.04822. = 711 . 6 ( 18 . 4 ) · 10 − 10 , BMW-2020 Not Yet Included. LQCD Concensus: a LO-HVP µ

  7. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Motivation Questions Really a ex . � = a SM µ ? µ HVP � = ( 720 ± 7 ) × 10 − 10 ? More specifically, a LO-HVP µ Impact for ∆ had α ( Q 2 ) at EW scale? [c.f. Crivellin et.al.(2003.04886), Keshavarzi et.al.(2006.12666).] New Experiments a ex . µ : FNAL-E989 0 . 14 ppm (soon 0 . 5 ppm ), J-PARC-E34 0 . 1 ppm (2024). ∆ had α ( Q 2 ) : MUonE, ILC. THIS TALK Investigate a LO-HVP by Lattice QCD (BMW-2020, arXiv:2002.12347). µ Discuss ∆ had α ( Q 2 ) by Lattice QCD compared with Data-Driven Dispersion (Jegerlehner et.al.).

  8. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Table of Contents Introduction 1 Lattice QCD for HVP and Muon g-2 2 BMW Highlight for Muon g-2 3 Discussion: Lattice vs. Pheno. 4 Window Method for a LO-HVP µ, ud Running α ( s ) Summary 5

  9. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Table of Contents Introduction 1 Lattice QCD for HVP and Muon g-2 2 BMW Highlight for Muon g-2 3 Discussion: Lattice vs. Pheno. 4 Window Method for a LO-HVP µ, ud Running α ( s ) Summary 5

  10. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Lattice Gauge Theory I ψ ] e − S G [ U ] − ¯ D [ U , ψ, ¯ ψ · D [ U , M ] · ψ O [ U , ψ, ¯ � O � = 1 � ψ ] , Z = 1 D U e − S G [ U ] Det � � � D [ U , M ] O [ U ] wick , Z = � N i = 1 O [ U ( i ) ] wick + O ( N − 1 / 2 ) , { U ( i ) } created w. P = e − S G · Det [ D ] / Z . Hybrid Monte Carlo (HMC) ↔ Heat-Bath. Regulalization: UV cutoff a , IR cutoff L 3 × T . Gauge Fields: U µ ∈ SU ( N c ) . Action: S LatGT = S G [ U ] − ¯ ψ · D [ U , M ] · ψ possesses exact gauge symm. Formalal limit a → 0 reproduces the continuum theory action. M π, K , ··· Renormalization: µ = a → 0 w. fixed around the physical values. M Ω

  11. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Lattice Gauge Theory II ψ ] e − S G [ U ] − ¯ D [ U , ψ, ¯ ψ · D [ U , M ] · ψ O [ U , ψ, ¯ � O � = 1 � ψ ] , Z = 1 � D U e − S G [ U ] Det � � D [ U , M ] O [ U ] wick , Z = � N i = 1 O [ U ( i ) ] wick + O ( N − 1 / 2 ) , { U ( i ) } created w. P = e − S G · Det [ D ] / Z . Hybrid Monte Carlo (HMC) ↔ Heat-Bath. Lattice Gauge Theory Non-Perturbative Definition of asymptotic-free gauge theory. Regulalization: UV cutoff a , IR cutoff L 3 × T . 1 M π, K , ··· 2 Renormalization: µ = a → 0 keeping M Ω With a mass gap Λ ∼ F π , M ρ , ... , a Λ → 0 and L Λ → ∞ under controlled. 3 First-Principle Calculations, i.e., No Approximation.

  12. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary LQCD Meas. of HVP and a LO-HVP µ { U ( i ) } : HMC ↓ D f [ U ] ≡ D [ U , m f ] : Dirac Op. η ( r ) X η ( r ) ↓ D XY φ X = η ( r ) , � N r Y | N r →∞ = δ XY X r = 1 N r ↓ with Conjugate Gradient Method, ↓ Low-Mode Averaging (Lanczos, No η ( r ) X ). D − 1 [ U ] : Quark Propagator. f

  13. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary LQCD Meas. of HVP and a LO-HVP µ { U ( i ) } : HMC ↓ D f [ U ] ≡ D [ U , m f ] : Dirac Op. η ( r ) X η ( r ) ↓ D XY φ X = η ( r ) , � N r Y | N r →∞ = δ XY X r = 1 N r ↓ with Conjugate Gradient Method, ↓ Low-Mode Averaging (Lanczos, No η ( r ) X ). D − 1 [ U ] : Quark Propagator. f

  14. Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary LQCD Meas. of HVP and a LO-HVP µ { U ( i ) } : HMC ↓ D f [ U ] ≡ D [ U , m f ] : Dirac Op. η ( r ) X η ( r ) ↓ D XY φ X = η ( r ) , � N r Y | N r →∞ = δ XY r = 1 X N r ↓ with Conjugate Gradient Method, ↓ Low-Mode Averaging (Lanczos, No η ( r ) X ). eγ µ eγ ν D − 1 [ U ] : Quark Propagator. f ↓ Vector Current Correlator µν ( x ) = � ( ¯ ψγ µ ψ ) x ( ¯ G f ψγ ν ψ ) y = 0 � − − → wick C f ReTr [ γ µ D − 1 ( x , 0 ) γ ν D − 1 � � µν ( x ) = − ( 0 , x )] , eγ µ f f eγ ν D f Tr [ γ µ D − 1 ( x , x )] Tr [ γ ν D − 1 � � �� µν ( x ) = Re ( y , y )] y = 0 , f f

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend