lattice qcd approach to hvp and muon g 2
play

Lattice QCD Approach to HVP and Muon g-2 Kohtaroh Miura (GSI - PowerPoint PPT Presentation

Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Lattice QCD Approach to HVP and Muon g-2 Kohtaroh Miura (GSI Helmholtz-Instute Mainz, Nagoya-Univ. KMI) RIKEN Seminar August 27, 2019, RIKEN-KOBE


  1. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Lattice QCD Approach to HVP and Muon g-2 Kohtaroh Miura (GSI Helmholtz-Instute Mainz, Nagoya-Univ. KMI) RIKEN Seminar August 27, 2019, RIKEN-KOBE Budapest-Marseille-Wuppertal (BMW) Collab. Refs: Phys. Rev. Lett. 121 , no. 2, 022002 (2018). Phys. Rev. D 96 , no. 7, 074507 (2017). With some updates and preliminary results.

  2. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Muon Anomalous Magnetic Moment a ℓ = e ,µ,τ Dirac Eq. with B: i � ∂ψ � � � � + β c 2 m ℓ + eA 0 ∂ t = α · − i � c ∇ − e A ψ , Nonlelativistic Limit, Pauli Eq.: μ B � ( − i � c ∇ − e A ) 2 i � ∂φ � ∂ t = − M ℓ · B + eA 0 φ , 2 m ℓ c Muon Strorage e � σ Magnetic Moment: M ℓ = g ℓ 2 , 2 m ℓ c In Dirac Theory: p g ℓ = 2 , a ℓ ≡ ( g ℓ − 2 ) / 2 = 0 , ω cyc = ω prec . s In QFT (with Loops) for Electron (M.Knecht ,NPPP2015): = 1 159 652 180 . 07 ( 6 )( 4 )( 77 ) × 10 − 12 ( O ( α 5 )) , a SM e exp = 1 159 652 180 . 73 ( 0 . 28 ) × 10 − 12 a [ 0 . 24 ppb ] . e a exp . = a SM µ ? µ

  3. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Muon Anomalous Magnetic Moment a ℓ = e ,µ,τ Dirac Eq. with B: i � ∂ψ � � � � + β c 2 m ℓ + eA 0 ∂ t = α · − i � c ∇ − e A ψ , Nonlelativistic Limit, Pauli Eq.: μ B � ( − i � c ∇ − e A ) 2 i � ∂φ � ∂ t = − M ℓ · B + eA 0 φ , 2 m ℓ c Muon Strorage e � σ Magnetic Moment: M ℓ = g ℓ 2 , 2 m ℓ c In Dirac Theory: p g ℓ = 2 , a ℓ ≡ ( g ℓ − 2 ) / 2 = 0 , ω cyc = ω prec . s In QFT (with Loops) for Electron (M.Knecht ,NPPP2015): = 1 159 652 180 . 07 ( 6 )( 4 )( 77 ) × 10 − 12 ( O ( α 5 )) , a SM e exp = 1 159 652 180 . 73 ( 0 . 28 ) × 10 − 12 a [ 0 . 24 ppb ] . e a exp . = a SM µ ? µ

  4. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective a exp . vs. a SM µ µ a contrib . × 10 10 SM contribution Ref. µ QED [5 loops] 11658471 . 8951 ± 0 . 0080 [Aoyama et al ’12] HVP-LO (pheno.) 692 . 6 ± 3 . 3 [Davier et al ’16] 694 . 9 ± 4 . 3 [Hagiwara et al ’11] 681 . 5 ± 4 . 2 [Benayoun et al ’16] 688 . 8 ± 3 . 4 [Jegerlehner ’17] HVP-NLO (pheno.) − 9 . 84 ± 0 . 07 [Hagiwara et al ’11] [Kurz et al ’11] HVP-NNLO 1 . 24 ± 0 . 01 [Kurz et al ’11] HLbyL 10 . 5 ± 2 . 6 [Prades et al ’09] Weak (2 loops) 15 . 36 ± 0 . 10 [Gnendiger et al ’13] SM tot [0.42 ppm] 11659180 . 2 ± 4 . 9 [Davier et al ’11] [0.43 ppm] 11659182 . 8 ± 5 . 0 [Hagiwara et al ’11] [0.51 ppm] 11659184 . 0 ± 5 . 9 [Aoyama et al ’12] Exp [0.54 ppm] 11659208 . 9 ± 6 . 3 [Bennett et al ’06] Exp − SM 28 . 7 ± 8 . 0 [Davier et al ’11] 26 . 1 ± 7 . 8 [Hagiwara et al ’11] 24 . 9 ± 8 . 7 [Aoyama et al ’12] | NoNewPhys × 10 10 ≃ 720 ± 7, a LO-HVP µ FNAL E989: 0.14-ppm (first data 0.5-ppm: 2019-Dec.?)), J-PARC E34: 0.1-ppm

  5. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective a ℓ in QFT QFT Def. for a ℓ : � ¯ ℓ − ( p ) |J µ | ℓ − ( p ′ ) � = ¯ u ( p )Γ µ ( p , p ′ ) u ( p ′ ) = (1) Γ µ ( q = p − p ′ ) = γ µ F 1 ( q 2 ) + i σ µν q ν 2 m µ F 2 ( q 2 ) + · · · , (2) F 2 ( 0 ) = a ℓ = ( g ℓ − 2 ) / 2 . (3) Standard Model, Loop Corr.: a ℓ = α/ ( 2 π ) + · · · . BSM = MSSM (Padley et.al.’15) or TC (Kurachi et.al. ’13) etc.: γ ∝ ( m ℓ / Λ BSM ) 2 . µ µ Technicolor

  6. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Really a exp . � = a SM µ ? µ The Hadronic Vacuum Polarization (HVP) contributions to a µ is a bottle-neck to answer for this question. γ µ µ HAD

  7. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Phenomenology of HVP

  8. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Pion Contributions to a µ from Experimental Data ± ± ± KLOE 08 368.1 0.4 2.3 2.2 ± ± BaBar 09 376.7 2.0 1.9 ± ± ± 365.3 0.9 2.3 2.2 KLOE 10 ± ± ± KLOE 12 366.7 1.2 2.4 0.8 ± ± BESIII 368.2 2.5 3.3 360 365 370 375 380 385 390 395 π π ,LO -10 a (600 - 900 MeV) [10 ] µ Figure: Borrowed by BESIII, PLB’16: Some tension among experiments on pion contributions to a µ .

  9. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective THIS TALK Lattice QCD for Muon g − 2 First Principle Crosschecks of the dispersive results. First Principle Predictions for assessing SM with measurements by FermiLab/J-PARC experiments (0.1-ppm). THIS TALK: Report BMW-Collab. results for muon g − 2. Compare/Discuss various results from lattice QCD as well as dispersive method.

  10. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Table of Contents Introduction 1 Results 2 Setup Continuum Extrapolations Comparison among LQCDs Discussions: Lattice vs Pheno 3 Summary and Perspective 4

  11. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Table of Contents Introduction 1 Results 2 Setup Continuum Extrapolations Comparison among LQCDs Discussions: Lattice vs Pheno 3 Summary and Perspective 4

  12. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Simulation Setup (BMWc. PRD-2017 and PRL-2018) 27.5 BMW Ensemble PRD2017 and PRL2018 27.0 6- β , 15 simulation with all physical 2 -1 26.5 masses. 2 /M π 26.0 Nf=(2+1+1) staggered quarks. 2M K 3.7000 25.5 3.7500 Large Volume: ( L , T ) ∼ ( 6 , 9 − 12 ) fm . 3.7753 3.8400 25.0 3.9200 AMA with 6000-9000 random-source 4.0126 phys meas. for disconnected. 24.5 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 2 /F π 2 M π β a [fm] N t N s #traj. M π [MeV] M K [MeV] #SRC (l,s,c,d) 3 . 7000 0 . 134 ∼ 131 ∼ 479 ( 768 , 64 , 64 , 9000 ) 64 48 10000 3 . 7500 0 . 118 96 56 15000 ∼ 132 ∼ 483 ( 768 , 64 , 64 , 6000 ) 3 . 7753 0 . 111 84 56 15000 ∼ 133 ∼ 483 ( 768 , 64 , 64 , 6144 ) 3 . 8400 0 . 095 96 64 25000 ∼ 133 ∼ 488 ( 768 , 64 , 64 , 3600 ) 3 . 9200 0 . 078 128 80 35000 ∼ 133 ∼ 488 ( 768 , 64 , 64 , 6144 ) 4 . 0126 0 . 064 144 96 04500 ∼ 133 ∼ 490 ( 768 , 64 , 64 , − )

  13. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Observables and Objectives 1e-01 20000 time-moment rep. a = 0.064 [fm] Π ud (Q 2 ) x 10 10 1e-02 lattice data 15000 1e-03 1e-04 C ud (t) 10000 1e-05 µ ) ^ 1e-06 ω (Q 2 /m 2 5000 1e-07 (m µ /2) 2 1e-08 0 1e-09 0 0.05 0.1 0.15 0.2 0 1 2 3 4 Q 2 [GeV 2 ] t [fm] � Π µν ( Q ) = ( Q µ Q ν − δ µν Q 2 )Π( Q 2 ) = d 4 x e iQx � j µ ( x ) j ν ( 0 ) � , (4) u γ µ u − ( 1 / 3 )¯ j µ = ( 2 / 3 )¯ d γ µ d − ( 1 / 3 )¯ s γ µ s + ( 2 / 3 )¯ c γ µ c + · · · , (5) � 2 � 1 � sin[ Qt / 2 ] 3 � Π( Q 2 ) = Π( Q 2 ) − Π( 0 ) = ˆ � t 2 � 1 − � j i ( t ) j i ( 0 ) � . (6) Qt / 2 3 t i = 1 � ∞ ℓ = e ,µ,τ = α 2 Q 2 dQ 2 ω � � Π( Q 2 ) . ˆ a LO-HVP (7) π 2 m 2 0 ℓ = e ,µ,τ

  14. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Observables and Objectives 1e-01 20000 time-moment rep. a = 0.064 [fm] Π ud (Q 2 ) x 10 10 1e-02 lattice data 15000 1e-03 1e-04 C ud (t) 10000 1e-05 µ ) ^ 1e-06 ω (Q 2 /m 2 5000 1e-07 (m µ /2) 2 1e-08 0 1e-09 0 0.05 0.1 0.15 0.2 0 1 2 3 4 Q 2 [GeV 2 ] t [fm] � Π µν ( Q ) = ( Q µ Q ν − δ µν Q 2 )Π( Q 2 ) = d 4 x e iQx � j µ ( x ) j ν ( 0 ) � , (4) u γ µ u − ( 1 / 3 )¯ j µ = ( 2 / 3 )¯ d γ µ d − ( 1 / 3 )¯ s γ µ s + ( 2 / 3 )¯ c γ µ c + · · · , (5) � 2 � 1 � sin[ Qt / 2 ] 3 � Π( Q 2 ) = Π( Q 2 ) − Π( 0 ) = ˆ � t 2 � 1 − � j i ( t ) j i ( 0 ) � . (6) Qt / 2 3 t i = 1 � ∞ ℓ = e ,µ,τ = α 2 Q 2 dQ 2 ω � � Π( Q 2 ) . ˆ a LO-HVP (7) π 2 m 2 0 ℓ = e ,µ,τ

  15. Introduction Results Discussions: Lattice vs Pheno Summary and Perspective Bounding [BMW PRD2017 and PRL2018] 1.0e-04 data The connected-light correlator C ud ( t ) loses 2-pi corr. 1.0e-05 signal for t > 3 fm . To control statistical error, consider C ud ( t > t c ) → C ud 1.0e-06 up / low ( t , t c ) , where C ud (t) C ud up ( t , t c ) = C ud ( t c ) ϕ ( t ) /ϕ ( t c ) , 1.0e-07 C ud low ( t , t c ) = 0 . 0 , 1.0e-08 with ϕ ( t ) = cosh[ E 2 π ( T / 2 − t )] , 1.0e-09 and E 2 π = 2 ( M 2 π + ( 2 π/ L ) 2 ) 1 / 2 . 1.0e-10 1 2 3 4 Similarly, C disc ( t ) → C disc up / low ( t , t c ) , t [fm] − C disc up ( t > t c ) = 0 . 1 C ud ( t c ) ϕ ( t ) /ϕ ( t c ) , − C disc low ( t > t c ) = 0 . 0 . Figure shows 3 C ud ( t ) = 5 1 By construction, � � � j ud x , t ) j ud ( � ( 0 ) � , C ud , disc ( t , t c ) ≤ C ud , disc ( t ) ≤ C ud , disc i i ( t , t c ) . 9 3 up low � i = 1 x by BMW Ensemble with a = 0 . 064 [fm] used in PRD2017/PRL2018.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend